Цитологія і генетика 2025, том 59, № 1, 89-91
Cytology and Genetics 2025, том 59, № 1, 127–135, doi: https://www.doi.org/10.3103/S0095452725010050

Genetic structure and differentiation of Hyla savignyi from the southern population in Anatolia

KalaycI T.E.

  • Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Department of Biology, Rize, Turkey

РЕЗЮМЕ. Генетичне різноманіття та популяційну структуру двох популяцій Hyla savignyi у південній Анатолії (Іскендерун; Хатай та Бозова; Шанлиурфа) оціню­вали за допомогою дванадцяти мікросателітних локусів. Кількість алелів на локус варіювала від 3 (Ha­B5R3) до 15 (Ha­T67) для Іскендерун (Хатай) і від 2 (Ha­B5R3) до 17 (Ha­T67) для Бозова (Шанлиурфа). Середня кількість окремих алелів становила 2,5 і 1,83 для Іскендерун (Хатай) і Бозова (Шанлиурфа), відповідно. Параметри генетичного різноманіття майже однакові для обох місцезнаходжень. Обидві популяції H. savignyi не показали значного надлишку гетерозиготності (p > 0,05) згідно з трьома моделями тестування етапу вкрай низької чисельності популяції (IAM, SMM і TPM) (табл. 4). SMM і TPM виявили значний дефіцит гетерозиготності в популяції Іскендерун (Хатай) і в популяції Бозова (Шанлиурфа) відпо­відно до моделі SMM. Згідно зі структурним аналізом, у Південній Туреччині є два чітких кластери. Попередні дослідники H. savignyi згадують про загадкове видоутворення і появу двох ліній на Близькому Сході. Це перше популяційно­генетичне дослідження, яке виявило генетичні відмінності та подібності між цими двома лініями.

Ключові слова: мікросупутник, Анатолія, криптичний вид, Hyla savignyi, популяційно­генетичний

Цитологія і генетика
2025, том 59, № 1, 89-91

Current Issue
Cytology and Genetics
2025, том 59, № 1, 127–135,
doi: 10.3103/S0095452725010050

Повний текст та додаткові матеріали

Цитована література

Adams, M., Raadik, T.A., Burridge, C.P., and Georges, A., Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room?, Syst. Biol., 2014, vol. 63, no. 4, pp. 518–533. https://doi.org/10.1093/sysbio/syu017

Ahmadzadeh, F., Flecks, M., Rödder, D., Böhme, W., Ilgaz, Ç., Harris, D.J., Engler, J.O., Üzüm, N., and Carretero, MA, Multiple dispersal out of Anatolia: biogeography and evolution of oriental green lizards, Biol. J. Linn. Soc., 2013, vol. 110, no. 2, pp. 398–408. https://doi.org/10.1111/bij.12129

Arens, P., van’t Westende, W., Bugter, R., Smulders, M.J., and Vosman, B., Microsatellite markers for the European tree frog Hyla arborea, Mol. Ecol., 2000, vol. 9, pp. 1944–1946.

Baier, F., Schmitz, A., Sauer-Gürth, H., and Wink, M., Pre-quaternary divergence and subsequent radiation explain longitudinal patterns of genetic and morphological variation in the striped skink, Heremites vittatus, BMC Evol. Biol., 2017, vol. 17, pp. 1–16. https://doi.org/10.1186/s12862-017-0969-0

Banks, S.C., Dujardin, M., McBurney, L., Blair, D., Barker, M., and Lindenmayer, D.B., How does ecological disturbance influence genetic diversity?, Trends Ecol. Evol., 2013, vol. 28, pp. 670–679. https://doi.org/10.1016/j.tree.2013.08.005

Berset-Brändli, L., Jaquiéry, J., Broquet, T., and Perrin, N., Isolation and characterization of microsatellite loci for the European tree frog (Hyla arborea), Mol. Ecol. Resour., 2008a, vol. 8, no. 5, pp. 1095–1097. https://doi.org/10.1111/j.1755-0998.2008.02189.x

Berset-Brändli, L., Jaquiéry, J., Broquet, T., Ulrich, Y., and Perrin, N., Extreme heterochiasmy and nascent sex chromosomes in European tree frogs, Proc. R. Soc. B: Biol. Sci., 2008b, vol. 275, no. 1642, pp. 1577–1585. https://doi.org/10.1098/rspb.2008.0298

Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K., Meier, R., Winker, K., Ingram, K., and Das, I., Cryptic species as a window on diversity and conservation, Trends Ecol. Evol., 2007, vol. 22, no. 3, pp. 148–155. https://doi.org/10.1016/j.tree.2006.11.004

Birbele, E., Di Marzio, A., Grauda, D., Vimercati, G., and Deksne, G., Genetic diversity of European tree frogs (Hyla arborea group): A systematic review, ARPHA Preprints, 2023, vol. 4, p. e108466.

Bossart, J.L. and Prowell, D.P., Genetic estimates of population structure and gene flow: Limitations, lessons and new directions, Trends Ecol. Evol., 1998, vol. 13, pp. 202–206.

Botstein, D., White, R.L., Skolnick, M., and Davis, R.W., Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet., 1980, vol. 32, pp. 314–331.

Bruford, M.W. and Wayne, R.K., Microsatellites and their application to population genetic studies, Curr. Opin. Genet. Dev., 1993, vol. 3, pp. 939–943.

De Barba, M., Miquel, C., Lobreaux, S., Quenette, P.Y., Swenson, J.E., and Taberlet, P., High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low- quantity and degraded DNA, Mol. Ecol. Resour., 2017, vol. 17, pp. 492–507. https://doi.org/10.1111/1755-0998.12594

Di Rienzo, A., Peterson, A.C., Garza, J.C., Valdes, A.M., Slatkin, M., and Freimer, N.B., Mutational processes of simple-sequence repeat loci in human populations, Proc. Natl. Acad. Sci. U. S. A., 1994, vol. 91, pp. 3166–3170.

Dufresnes, C., Brelsford, A., Béziers, P., and Perrin, N., Stronger transferability but lower variability in transcriptomic-than in anonymous microsatellites: evidence from Hylid frogs, Mol. Ecol. Resour., 2014, vol. 14, no. 4, pp. 716–725. https://doi.org/10.1111/1755-0998.12215

Dufresnes, C., Mazepa, G., Jablonski, D., Sadek, R.A., and Litvinchuk, S.N., A river runs through it: tree frog genomics supports the Dead Sea Rift as a rare phylogeographical break, Biol. J. Linn. Soc., 2019, vol. 128, no. 1, pp. 130–137. https://doi.org/10.1093/biolinnean/blz076

Dufresnes, C., Nicieza, A.G., Litvinchuk, S.N., Rodrigues, N., Jeffries, D.L., Vences, M., Perrin, N., and Martínez-Solano, Í., Are glacial refugia hotspots of speciation and cytonuclear discordances? Answers from the genomic phylogeography of Spanish common frogs, Mol. Ecol., 2020, vol. 29, no. 5, pp. 986–1000. https://doi.org/10.1111/mec.15368

Frankham, R., Challenges and opportunities of genetic approaches to biological conservation, Biol. Conserv., 2010, vol 143, no. 9, pp. 1919–1927. https://doi.org/10.1016/j.biocon.2010.05.011

Glaubitz, J.C., Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages, Mol. Ecol. Notes, 2004, vol. 4, no. 2, pp. 309–310.

Godinho, R., Crespo, E.G., and Ferrand, N., The limits of mtDNA phylogeography: complex patterns of population history in a highly structured Iberian lizard are only revealed by the use of nuclear markers, Mol. Ecol., 2008, vol. 17, no. 21, pp. 4670–4683. https://doi.org/10.1111/j.1365-294X.2008.03929.x

Goldstein, D.B. and Schlotterer, C., Microsatellites—Evolution and Applications, Oxford: Oxford Univ. Press, 1999.

Goudet, J., FSTAT version 2. 9. 4: a program to estimate and test population genetics parameters, 2003. http://www.unil.ch/izea/softwares/fstat.htm.

Gül, S., Ecological divergence between two evolutionary lineages of Hyla savignyi (Audouin, 1827) in Turkey: effects of the Anatolian Diagonal, Anim. Biol., 2013, vol. 63, no. 3, pp. 285–295. https://doi.org/10.1163/15707563-00002412

Gül, S., Kutrup, B., and Özdemir, N., Patterns of distribution of tree frogs in Turkey based on molecular data, Amphib-Reptilia, 2012, vol. 33, no. 1, pp. 95–103. https://doi.org/10.1163/156853812X624432

Gvoždík, V., Moravec, J., Klütsch, C., and Kotlík, P., Phylogeography of the Middle Eastern tree frogs (Hyla, Hylidae, Amphibia) as inferred from nuclear and mitochondrial DNA variation, with a description of a new species, Mol. Phylogenet. Evol., 2010, vol. 55, no. 3, pp. 1146–1166. https://doi.org/10.1016/j.ympev.2010.03.015

Jandzik, D., Jablonski, D., Zinenko, O., Kukushkin, O.V., Moravec, J., and Gvoždík, V., Pleistocene extinctions and recent expansions in an anguid lizard of the genus Pseudopus, Zool. Scr., 2018, vol. 47, no. 1, pp. 21–32. https://doi.org/10.1111/zsc.12256

Kalinowski, S.T., Taper, ML, and Marshall, T.C., Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment, Mol. Ecol., 2007, vol. 16, no. 5, pp. 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

Keller, L.F. and Waller, D.M., Inbreeding effects in wild populations, Trends Ecol. Evol., 2002, vol. 17, pp. 230–241. https://doi.org/10.1016/S0169-5347(02)02489-8

Kopelman, N.M., Mayzel, J., Jakobsson, M., Rosenberg, N.A., and Mayrose, I., Clumpak: a program for identifying clustering modes and packaging population structure inferences across K, Mol. Ecol. Resour., 2015, vol. 15, pp. 1179–1191. https://doi.org/10.1111/1755-0998.12387

Kornilios, P., Ilgaz, Ç., Kumlutaş, Y., Lymberakis, P., Moravec, J., Sindaco, R., Rastegar-Pouyani, N., Afroosheh, M., Giokas, S., Fraguedakis-Tsolis, S., and Chondropoulos, B., Neogene climatic oscillations shape the biogeography and evolutionary history of the Eurasian blindsnake, Mol. Phylogenet. Evol., 2012, vol. 62, no. 3, pp. 856–873. https://doi.org/10.1016/j.ympev.2011.11.035

Kornilios, P., Polytomies, signal and noise: revisiting the mitochondrial phylogeny and phylogeography of the Eurasian blindsnake species complex (Typhlopidae, Squamata), Zool. Scr., 2017, vol. 46, no. 6, pp. 665–674. https://doi.org/10.1111/zsc.12243

Leberg, P.L., Estimating allelic richness: Effects of sample size and bottlenecks, Mol. Ecol., 2002, vol. 11, p. 2445–2449. https://doi.org/10.1046/j.1365-294X.2002.01612.x

Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update, Bioinformatics, 2012, vol. 28, pp. 2537–2539.

Perez de Rosas, A. R., Segura, E.L., and Garcia, B.A., Microsatellite analysis of genetic structure in natural Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina: its implication in assessing the effectiveness of Chagas’ disease vector control programmes, Mol. Ecol., 2007, vol. 16, pp. 1401–1412. https://doi.org/10.1111/j.1365-294X.2007.03251.x

Piry, S., Luikart, G., and Cornuet, J.M., BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data, J. Hered., 1999, vol. 90, no. 4, pp. 502–503.

Poulakakis, N., Kapli, P., Kardamaki, A., Skourtanioti, E., Göçmen, B., Ilgaz, Ç., Kumlutaş, Y., Avcı, A., and Lymberakis, P., Comparative phylogeography of six herpetofauna species in Cyprus: late Miocene to Pleistocene colonization routes, Biol. J. Linn. Soc., 2013, vol. 108, no. 3, pp. 619–635. https://doi.org/10.1111/j.1095-8312.2012.02039.x

Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945–959.

Rousset, F., Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux, Mol. Ecol. Res., 2008, vol. 8, pp. 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

Rousset, F. and Raymond, M., Testing heterozygote excess and deficiency, Genetics, 1995, vol. 140, pp. 1413–1419.

Schneider, H., Hyla savignyi Audouin, 1827–Mittelöstlicher Laubfrosch, in Handbuch der Reptilien und Amphibien Europas, 2009, vol. 5, pp. 141–172.

Shete S., Tiwari H., and Elston R. C., On estimating the heterozygosity and polymorphism information content value, Theor. Popul. Biol., 2000, vol. 57, no. 3, pp. 265–271.

Smouse, R.P.P. and Peakall, R., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update, Bioinformatics, 2012, vol. 28, no. 19, pp. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460

Tamar, K., Carranza, S., In den Bosch, H., Sindaco, R., Moravec, J., and Meiri, S., Hidden relationships and genetic diversity: Molecular phylogeny and phylogeography of the Levantine lizards of the genus Phoenicolacerta (Squamata: Lacertidae), Mol. Phylogenet. Evol., 2015, vol. 91, pp. 86–97. https://doi.org/10.1016/j.ympev.2015.05.002

Wright, J.M. and Bentzen, P., Microsatellites: genetic markers for the future, Mol. Genet. Fish., 1995, vol. 1, pp. 117–121. https://doi.org/10.1007/978-94-011-1218-5_7

Wu, X.B. and Hu, Y.L., Genetic diversity and molecular differentiation of Chinese toad based on microsatellite markers, Mol. Biol. Rep., 2010, vol. 37, no. 5, pp. 2379–2386. https://doi.org/10.1007/s11033-009-9745-6

Yoshikawa, N., Matsui, M., and Nishikawa, K., Genetic structure and cryptic diversity of Onychodactylus japonicus (Amphibia, Caudata, Hynobiidae) in northeastern Honshu, Japan, as revealed by allozymic analysis, Zool. Sci., 2012, vol. 29, no. 4, pp. 229–237. https://doi.org/10.2108/zsj.29.229