Genetic diversity and population structure of two populations of Hyla savignyi in Southern Anatolia (İskenderun; Hatay and Bozova; Şanlıurfa) were evaluated using twelve microsatellite loci. The alleles per locus ranged from 3 (HaB5R3) to 15 (HaT67) for İskenderun (Hatay) and ranged from 2 (HaB5R3) to 17 (HaT67) for Bozova (Şanlıurfa). The mean number of private alleles was found to be 2.5 and 1.83 for İskenderun (Hatay) and Bozova (Şanlıurfa), respectively. Genetic diversity parameters are nearly the same for the two localities. All two populations of H. savignyi showed no significant excess heterozygosity (p > 0.05) according to three bottleneck test models (IAM, SMM, and TPM) (Table 4). The SMM and TPM found significant heterozygosity deficiency in the İskenderun (Hatay) population and the Bozova (Şanlıurfa) population according to the SMM model. According to Structure analysis, two distinct clusters exist in Southern Türkiye. Previous researchers in H. savignyi mention cryptic speciation and the occurrence of two lineages in the Middle East. This study is the first population genetic study that revealed genetic differences and similarities between these two lineages.
Keywords: microsatellite, Anatolia, cryptic species, Hyla savignyi, population genetic

Full text and supplemented materials
References
Adams, M., Raadik, T.A., Burridge, C.P., and Georges, A., Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room?, Syst. Biol., 2014, vol. 63, no. 4, pp. 518–533. https://doi.org/10.1093/sysbio/syu017
Ahmadzadeh, F., Flecks, M., Rödder, D., Böhme, W., Ilgaz, Ç., Harris, D.J., Engler, J.O., Üzüm, N., and Carretero, MA, Multiple dispersal out of Anatolia: biogeography and evolution of oriental green lizards, Biol. J. Linn. Soc., 2013, vol. 110, no. 2, pp. 398–408. https://doi.org/10.1111/bij.12129
Arens, P., van’t Westende, W., Bugter, R., Smulders, M.J., and Vosman, B., Microsatellite markers for the European tree frog Hyla arborea, Mol. Ecol., 2000, vol. 9, pp. 1944–1946.
Baier, F., Schmitz, A., Sauer-Gürth, H., and Wink, M., Pre-quaternary divergence and subsequent radiation explain longitudinal patterns of genetic and morphological variation in the striped skink, Heremites vittatus, BMC Evol. Biol., 2017, vol. 17, pp. 1–16. https://doi.org/10.1186/s12862-017-0969-0
Banks, S.C., Dujardin, M., McBurney, L., Blair, D., Barker, M., and Lindenmayer, D.B., How does ecological disturbance influence genetic diversity?, Trends Ecol. Evol., 2013, vol. 28, pp. 670–679. https://doi.org/10.1016/j.tree.2013.08.005
Berset-Brändli, L., Jaquiéry, J., Broquet, T., and Perrin, N., Isolation and characterization of microsatellite loci for the European tree frog (Hyla arborea), Mol. Ecol. Resour., 2008a, vol. 8, no. 5, pp. 1095–1097. https://doi.org/10.1111/j.1755-0998.2008.02189.x
Berset-Brändli, L., Jaquiéry, J., Broquet, T., Ulrich, Y., and Perrin, N., Extreme heterochiasmy and nascent sex chromosomes in European tree frogs, Proc. R. Soc. B: Biol. Sci., 2008b, vol. 275, no. 1642, pp. 1577–1585. https://doi.org/10.1098/rspb.2008.0298
Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K., Meier, R., Winker, K., Ingram, K., and Das, I., Cryptic species as a window on diversity and conservation, Trends Ecol. Evol., 2007, vol. 22, no. 3, pp. 148–155. https://doi.org/10.1016/j.tree.2006.11.004
Birbele, E., Di Marzio, A., Grauda, D., Vimercati, G., and Deksne, G., Genetic diversity of European tree frogs (Hyla arborea group): A systematic review, ARPHA Preprints, 2023, vol. 4, p. e108466.
Bossart, J.L. and Prowell, D.P., Genetic estimates of population structure and gene flow: Limitations, lessons and new directions, Trends Ecol. Evol., 1998, vol. 13, pp. 202–206.
Botstein, D., White, R.L., Skolnick, M., and Davis, R.W., Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet., 1980, vol. 32, pp. 314–331.
Bruford, M.W. and Wayne, R.K., Microsatellites and their application to population genetic studies, Curr. Opin. Genet. Dev., 1993, vol. 3, pp. 939–943.
De Barba, M., Miquel, C., Lobreaux, S., Quenette, P.Y., Swenson, J.E., and Taberlet, P., High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low- quantity and degraded DNA, Mol. Ecol. Resour., 2017, vol. 17, pp. 492–507. https://doi.org/10.1111/1755-0998.12594
Di Rienzo, A., Peterson, A.C., Garza, J.C., Valdes, A.M., Slatkin, M., and Freimer, N.B., Mutational processes of simple-sequence repeat loci in human populations, Proc. Natl. Acad. Sci. U. S. A., 1994, vol. 91, pp. 3166–3170.
Dufresnes, C., Brelsford, A., Béziers, P., and Perrin, N., Stronger transferability but lower variability in transcriptomic-than in anonymous microsatellites: evidence from Hylid frogs, Mol. Ecol. Resour., 2014, vol. 14, no. 4, pp. 716–725. https://doi.org/10.1111/1755-0998.12215
Dufresnes, C., Mazepa, G., Jablonski, D., Sadek, R.A., and Litvinchuk, S.N., A river runs through it: tree frog genomics supports the Dead Sea Rift as a rare phylogeographical break, Biol. J. Linn. Soc., 2019, vol. 128, no. 1, pp. 130–137. https://doi.org/10.1093/biolinnean/blz076
Dufresnes, C., Nicieza, A.G., Litvinchuk, S.N., Rodrigues, N., Jeffries, D.L., Vences, M., Perrin, N., and Martínez-Solano, Í., Are glacial refugia hotspots of speciation and cytonuclear discordances? Answers from the genomic phylogeography of Spanish common frogs, Mol. Ecol., 2020, vol. 29, no. 5, pp. 986–1000. https://doi.org/10.1111/mec.15368
Frankham, R., Challenges and opportunities of genetic approaches to biological conservation, Biol. Conserv., 2010, vol 143, no. 9, pp. 1919–1927. https://doi.org/10.1016/j.biocon.2010.05.011
Glaubitz, J.C., Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages, Mol. Ecol. Notes, 2004, vol. 4, no. 2, pp. 309–310.
Godinho, R., Crespo, E.G., and Ferrand, N., The limits of mtDNA phylogeography: complex patterns of population history in a highly structured Iberian lizard are only revealed by the use of nuclear markers, Mol. Ecol., 2008, vol. 17, no. 21, pp. 4670–4683. https://doi.org/10.1111/j.1365-294X.2008.03929.x
Goldstein, D.B. and Schlotterer, C., Microsatellites—Evolution and Applications, Oxford: Oxford Univ. Press, 1999.
Goudet, J., FSTAT version 2. 9. 4: a program to estimate and test population genetics parameters, 2003. http://www.unil.ch/izea/softwares/fstat.htm.
Gül, S., Ecological divergence between two evolutionary lineages of Hyla savignyi (Audouin, 1827) in Turkey: effects of the Anatolian Diagonal, Anim. Biol., 2013, vol. 63, no. 3, pp. 285–295. https://doi.org/10.1163/15707563-00002412
Gül, S., Kutrup, B., and Özdemir, N., Patterns of distribution of tree frogs in Turkey based on molecular data, Amphib-Reptilia, 2012, vol. 33, no. 1, pp. 95–103. https://doi.org/10.1163/156853812X624432
Gvoždík, V., Moravec, J., Klütsch, C., and Kotlík, P., Phylogeography of the Middle Eastern tree frogs (Hyla, Hylidae, Amphibia) as inferred from nuclear and mitochondrial DNA variation, with a description of a new species, Mol. Phylogenet. Evol., 2010, vol. 55, no. 3, pp. 1146–1166. https://doi.org/10.1016/j.ympev.2010.03.015
Jandzik, D., Jablonski, D., Zinenko, O., Kukushkin, O.V., Moravec, J., and Gvoždík, V., Pleistocene extinctions and recent expansions in an anguid lizard of the genus Pseudopus, Zool. Scr., 2018, vol. 47, no. 1, pp. 21–32. https://doi.org/10.1111/zsc.12256
Kalinowski, S.T., Taper, ML, and Marshall, T.C., Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment, Mol. Ecol., 2007, vol. 16, no. 5, pp. 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
Keller, L.F. and Waller, D.M., Inbreeding effects in wild populations, Trends Ecol. Evol., 2002, vol. 17, pp. 230–241. https://doi.org/10.1016/S0169-5347(02)02489-8
Kopelman, N.M., Mayzel, J., Jakobsson, M., Rosenberg, N.A., and Mayrose, I., Clumpak: a program for identifying clustering modes and packaging population structure inferences across K, Mol. Ecol. Resour., 2015, vol. 15, pp. 1179–1191. https://doi.org/10.1111/1755-0998.12387
Kornilios, P., Ilgaz, Ç., Kumlutaş, Y., Lymberakis, P., Moravec, J., Sindaco, R., Rastegar-Pouyani, N., Afroosheh, M., Giokas, S., Fraguedakis-Tsolis, S., and Chondropoulos, B., Neogene climatic oscillations shape the biogeography and evolutionary history of the Eurasian blindsnake, Mol. Phylogenet. Evol., 2012, vol. 62, no. 3, pp. 856–873. https://doi.org/10.1016/j.ympev.2011.11.035
Kornilios, P., Polytomies, signal and noise: revisiting the mitochondrial phylogeny and phylogeography of the Eurasian blindsnake species complex (Typhlopidae, Squamata), Zool. Scr., 2017, vol. 46, no. 6, pp. 665–674. https://doi.org/10.1111/zsc.12243
Leberg, P.L., Estimating allelic richness: Effects of sample size and bottlenecks, Mol. Ecol., 2002, vol. 11, p. 2445–2449. https://doi.org/10.1046/j.1365-294X.2002.01612.x
Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update, Bioinformatics, 2012, vol. 28, pp. 2537–2539.
Perez de Rosas, A. R., Segura, E.L., and Garcia, B.A., Microsatellite analysis of genetic structure in natural Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina: its implication in assessing the effectiveness of Chagas’ disease vector control programmes, Mol. Ecol., 2007, vol. 16, pp. 1401–1412. https://doi.org/10.1111/j.1365-294X.2007.03251.x
Piry, S., Luikart, G., and Cornuet, J.M., BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data, J. Hered., 1999, vol. 90, no. 4, pp. 502–503.
Poulakakis, N., Kapli, P., Kardamaki, A., Skourtanioti, E., Göçmen, B., Ilgaz, Ç., Kumlutaş, Y., Avcı, A., and Lymberakis, P., Comparative phylogeography of six herpetofauna species in Cyprus: late Miocene to Pleistocene colonization routes, Biol. J. Linn. Soc., 2013, vol. 108, no. 3, pp. 619–635. https://doi.org/10.1111/j.1095-8312.2012.02039.x
Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945–959.
Rousset, F., Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux, Mol. Ecol. Res., 2008, vol. 8, pp. 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x
Rousset, F. and Raymond, M., Testing heterozygote excess and deficiency, Genetics, 1995, vol. 140, pp. 1413–1419.
Schneider, H., Hyla savignyi Audouin, 1827–Mittelöstlicher Laubfrosch, in Handbuch der Reptilien und Amphibien Europas, 2009, vol. 5, pp. 141–172.
Shete S., Tiwari H., and Elston R. C., On estimating the heterozygosity and polymorphism information content value, Theor. Popul. Biol., 2000, vol. 57, no. 3, pp. 265–271.
Smouse, R.P.P. and Peakall, R., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update, Bioinformatics, 2012, vol. 28, no. 19, pp. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
Tamar, K., Carranza, S., In den Bosch, H., Sindaco, R., Moravec, J., and Meiri, S., Hidden relationships and genetic diversity: Molecular phylogeny and phylogeography of the Levantine lizards of the genus Phoenicolacerta (Squamata: Lacertidae), Mol. Phylogenet. Evol., 2015, vol. 91, pp. 86–97. https://doi.org/10.1016/j.ympev.2015.05.002
Wright, J.M. and Bentzen, P., Microsatellites: genetic markers for the future, Mol. Genet. Fish., 1995, vol. 1, pp. 117–121. https://doi.org/10.1007/978-94-011-1218-5_7
Wu, X.B. and Hu, Y.L., Genetic diversity and molecular differentiation of Chinese toad based on microsatellite markers, Mol. Biol. Rep., 2010, vol. 37, no. 5, pp. 2379–2386. https://doi.org/10.1007/s11033-009-9745-6
Yoshikawa, N., Matsui, M., and Nishikawa, K., Genetic structure and cryptic diversity of Onychodactylus japonicus (Amphibia, Caudata, Hynobiidae) in northeastern Honshu, Japan, as revealed by allozymic analysis, Zool. Sci., 2012, vol. 29, no. 4, pp. 229–237. https://doi.org/10.2108/zsj.29.229