Цитологія і генетика 2025, том 59, № 1, 81-83
Cytology and Genetics 2025, том 59, № 1, 95–107, doi: https://www.doi.org/10.3103/S0095452725010025

A novel hexose transporter in rice putatively regulates the uptake of melatonin, the potent abiotic stress regulator

Banerjee A., Roychoudhury A.

  1. Department of Biotechnology, St. Xavier’s College (Autonomous), 30, Mother Teresa Sarani, Kolkata – 700016, West Bengal, India
  2. Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi – 110068, India

РЕЗЮМЕ. У цьому рукописі представлено ідентифікацію та прогнозну структурну характеристику нового GLUT1-ортолога людини, транспортера мелатоніну (MelT), в рослинах (особливо в рисі) та його функціональну здатність транспортувати мелатонін. Показано, що мелатонін зв’язується з тими самими залишками в GLUT1, що й глюкоза. Моделювання гомології та докінг­аналіз передбачили загальну гомологію послідовності OsMelT з GLUT1. Було передбаче­но, що білок містить 12 трансмембранних спіралей та цукротранспортний домен PF00083.24 (відповідальний за зв’язування та вивільнення мелатоніну). С­кінець був більш структурованим порівняно з N­кінцем, і по всьому білку були виявлені сайти фосфорилювання. Висхідний аналіз MelT показав наявність цис­активних мотивів, пов’язаних з абсцизовою кислотою, регуляцією мелатоніну та індукцією як до абіотичного, так і до біотичного стресу. Дослідження експресії підтвердили посилення регуляції OsMelT у присутності глюкози та підвищених концентрацій екзогенного мелатоніну. В цілому, дослідження передбачило функціональну здатність OsMelT транспортувати мелатонін і підтримувати поглинання та мобілізацію біомолекули за вищих концентрацій.

Ключові слова: мелатонін, транспортер, філограма, моделювання гомології, докінг­аналіз, експресія генів, біоінформатика

Цитологія і генетика
2025, том 59, № 1, 81-83

Current Issue
Cytology and Genetics
2025, том 59, № 1, 95–107,
doi: 10.3103/S0095452725010025

Повний текст та додаткові матеріали

Цитована література

Agirre, J., Atanasova, M., Bagdonas, H., Ballard, C.B., Beilsten-Edmands, A.B.J., Borges, R.J., Brown, D.G., et al., The CCP4 suite: integrative software for macromolecular crystallography, Acta Cryst. D, 2023, vol. 79, pp. 449–461.

Ahmad, I., Song, X., Hussein Ibrahim, M.E., Jamal, Y., Younas, M.U., Zhu, G., Zhou, G., and Adam Ali, A.Y., The role of melatonin in plant growth and metabolism, and its interplay with nitric oxide and auxin in plants under different types of abiotic stress, Front. Plant Sci., 2023, vol. 14, p. 1108507.

Arnao, M.B. and Hernandez-Ruiz, J., Melatonin in its relationship to plant hormones, Ann. Bot., 2018, vol. 121, pp. 195–207.

Arnao, M.B. and Hernandez-Ruiz, J., Melatonin: A new plant hormone and/ or a plant master regulator?, Trends Plant Sci., 2019, vol. 24, pp. 38–48.

Banerjee, A. and Roychoudhury, A., Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress, Protoplasma, 2017, vol. 254, pp. 3–16.

Banerjee, A. and Roychoudhury, A., Abiotic stress, generation of reactive oxygen species, and their consequences: An overview, in Revisiting the role of reactive oxygen species (ROS) in plants: ROS Boon or bane for plants?, Singh, V.P., Singh, S., Tripathi, D., Mohan Prasad, S., and Chauhan, D.K., Eds., United States: John Wiley and Sons, 2018, pp. 23–50.

Banerjee, A. and Roychoudhury, A., Melatonin application reduces fluoride uptake and toxicity in rice seedlings by altering abscisic acid, gibberellin, auxin and antioxidant homeostasis, Plant Physiol. Biochem., 2019a, vol. 145, pp. 164–173.

Banerjee, A. and Roychoudhury, A., Structural introspection of a putative fluoride transporter in plants, 3 Biotech., 2019b, vol. 9, p. 103.

Banerjee, A. and Roychoudhury, A., Molecular characterization of a phytomelatonin receptor and its overexpression as a ‘one-stop’ solution to nullify the toxic effects of hazardous inorganic agro-pollutants, Environ. Pollut., https://doi.org/10.1016/j.envpol.2024.125041

Baum, D., Trait evolution on a phylogenetic tree: Relatedness, similarity, and the myth of evolutionary advancement, Nat. Edu., 2008, vol. 1, p. 191.

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., et al., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res., 2014, vol. 42, pp. W252–W258.

Bilas, R., Szafran, K., Hnatuszko-Konka, K., and Kononowicz, A.K., Cis-regulatory elements used to control gene expression in plants, Plant Cell Tissue Organ Cult., 2016, vol. 127, pp. 269–287.

Blom, N., Gammeltoft, S., and Brunak, S., Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites, J. Mol. Biol., 1999, vol. 294, pp. 1351–1362.

Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., et al., Phylogeny.fr: robust phylogenetic analysis for the non-specialist, Nucleic Acids Res., 2008, vol. 36, pp. W465–W469.

Fan, J., Xie, Y., Zhang, Z., and Chen, L., Melatonin: A multifunctional factor in plants, Int. J. Mol. Sci., 2018, vol. 19, p. 1528.

Gu, Q., Chen, Z., Yu, X., Cui, W., Pan, J., et al., Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis, Plant Sci., 2017, vol. 261, pp. 28–37.

Gubler, F. and Jacobsen, J.V., Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene, Plant Cell, 1992, vol. 4, pp. 1435–1441.

Guerrero, D., Bautista, R., Villalobos, D.P., Cantón, F.R., and Claros, M.G., AlignMiner: a Web-based tool for detection of divergent regions in multiple sequence alignments of conserved sequences, Algorithms Mol. Biol., 2010, vol. 5, p. 24.

Hasan, M.K., Liu, C.-X., Pan, Y.-T., Ahammed, G.J., Qi, Z.-Y., and Zhou, J., Melatonin alleviates low-sulfur stress by promoting sulfur homeostasis in tomato plants, Sci. Rep., 2018, vol. 8, p. 10182.

Hevia, D., Gonzalez-Menendez, P., Quiros-Gonzalez, I., Miar, A., Rodriguez-Garcia, A., Tan, D.X., et al., Melatonin uptake through glucose transporters: a new target for melatonin inhibition of cancer, J. Pineal Res., 2015, vol. 58, pp. 234–250.

Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T., Plant cis-acting regulatory DNA elements (PLACE) database: 1999, Nucleic Acids Res., 1999, vol. 27, pp. 297–300.

Ho, B.K. and Brasseur, R., The Ramachandran plots of glycine and pre-proline, BMC Struct. Biol., 2005, vol. 5, p. 14.

Kandalepas, P.C., Mitchell, J.W., and Gillette, M.U., Melatonin signal transduction pathways require E-Box-mediated transcription of Per1 and Per2 to reset the SCN clock at dusk, PLoS One, 2016, p. 11, p. e0157824.

Kapp, K., Schrempf, S., Lemberg, M.K., and Dobberstein, B., Post-targeting functions of signal peptides, in Madame Curie Bioscience Database, Austin: Landes Bioscience, 2009.

Kawahara, Y., de la Bastide, M., Hamilton, J.P., Kanamori, H., McCombie, W.R., et al., Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data, Rice, 2013, vol. 6, p. 4.

Kiss, R.D., Sandor, M., and Szalai, F., Http://Mcule.com: A public web service for drug discovery, J Cheminf., 2012, vol. 4, p. 17.

Krogh, A., Larsson, B., von Heijne, G., and Sonnham-mer, E.L.L., Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes, J. Mol. Biol., 2001, vol. 305, pp. 567–580.

Lam, V.M., Daruwalla, K.R., Henderson, P.J., and Jones-Mortimer, M.C., Proton-linked D-xylose transport in Escherichia coli, J. Bacteriol., 1980, vol. 143, pp. 396–402.

McGuffin, L.J., Intrinsic disorder prediction from the analysis of multiple protein fold recognition models, Bioinformatics, 2008, vol. 24, pp. 1798–1804.

McWilliam, H., Li, W.Z., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., et al., Analysis Tool Web Services from the EMBL-EBI, Nucleic Acids Res., 2013, vol. 41, pp. W597–W600.

Meng, X.Y., Zhang, H.X., Mezei, M., and Cui, M., Molecular docking: A powerful approach for structure-based drug discovery, Curr. Comput. Aided Drug Des., 2011, vol. 7, pp. 146–157.

Moustafa-Farag, M., Almoneafy, A., Mahmoud, A., Elekelish, A., Arnao, M., Li, L., and Ai, S., Melatonin and its protective role against biotic stress impacts on plants, Biomolecules, 2019, vol. 10, p. 54.

Murch, S.J. and Erland, L.A.E., A systematic review of melatonin in plants: An example of evolution of literature, Front. Plant Sci., 2021, vol. 12, p. 683047.

Park, M.-S., Molecular dynamics simulations of the human glucose transporter GLUT1, PLoS One, 2015, vol. 10, p. e0125361.

Paul, S. and Roychoudhury, A., Transcriptome profiling of abiotic stress-responsive genes during cadmium chloride-mediated stress in two indica rice varieties, J. Plant Growth Regul., 2018, vol. 37, pp. 657–667.

Poeggeler, B., Thuermann, S., Dose, A., Schoenke, M., Burkhardt, S., and Hardeland, R., Melatonin’s unique radical scavenging properties–roles of its functional substituents as revealed by a comparison with its structural analogs, J. Pineal Res., 2002, vol. 33, pp. 20–30.

Robert, X. and Gouet, P., Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res., 2014, vol. 42, pp. W320–W324.

Wan, B., Lin, Y., and Mou, T., Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses, FEBS Lett., 2007, vol. 581, pp. 1179–1189.

Wang, Z.-Q., Wei, C.-C., Sharma, M., Pant, K., Crane, B.R., and Stuehr, D.J., A conserved Val to Ile switch near the heme pocket of animal and bacterial nitric-oxide synthases helps determine their distinct catalytic profiles, J. Biol. Chem., 2004, vol. 279, pp. 19018–19025.

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., and Schwede, T., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., 2018, vol. 46, pp. W296–W303.

Wei, J., Li, D.X., Zhang, J.R., Shan, C., Rengel, Z., Song, Z.B., and Chen, Q., Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana, J. Pineal Res., 2018, vol. 65, p. e12500.

Xu, B., Liu, Y., Lin, C., Dong, J., Liu, X., and He, Z., Reconstruction of the protein-protein interaction network for protein complexes identification by walking on the protein pair fingerprints similarity network, Front. Genet., 2018, vol. 9, p. 272.

Yeagle, P.L., Membrane biogenesis, In: Yeagle, P.L., Ed., The membranes of cells, United States: Academic, 2016, pp. 269–290.

Zhang, H.J., Zhang, N., Yang, R.C., et al., Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.), J. Pineal Res., 2014, vol. 57, pp. 269–279.

Zhao, J. and Hu, J., Melatonin: Current status and future perspectives in horticultural plants, Front. Plant Sci., 2023, vol. 14, p. 1140803.

Zou, X., Neuman, D., and Shen, Q.J., Interactions of two transcriptional repressors and two transcriptional activators in modulating gibberellin signaling in aleurone cells, Plant Physiol., 2008, vol. 148, pp. 176–186.