TSitologiya i Genetika 2025, vol. 59, no. 1, 81-83
Cytology and Genetics 2025, vol. 59, no. 1, 95–107, doi: https://www.doi.org/10.3103/S0095452725010025

A novel hexose transporter in rice putatively regulates the uptake of melatonin, the potent abiotic stress regulator

Banerjee A., Roychoudhury A.

  1. Department of Biotechnology, St. Xavier’s College (Autonomous), 30, Mother Teresa Sarani, Kolkata – 700016, West Bengal, India
  2. Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi – 110068, India

The present manuscript represents the identification and predictive structural characterization of novel human GLUT1­orthologue, melatonin transporter (MelT) in plants (especially rice) and its functional ability to transport melatonin. It is reported that melatonin binds to the same residues within GLUT1 as glucose. Homology mode­lling and docking analyses predicted overall sequence homology of OsMelT with GLUT1. The protein was predicted to contain 12 transmembrane helices and a PF00083.24 sugar transport domain (responsible for melatonin binding and release). The C­terminus was more structured, compared to the N­terminus, and phosphorylation sites were detected throughout the protein. The upstream analysis of MelT showed the presence of cis acting motifs associated with abscisic acid, melatonin regulation and induction to both abiotic and biotic stress. Expression studies validated the up regulation of OsMelT in presence of glucose and higher concentrations of exoge­nous melatonin. Overall, the study predicted the functional ability of OsMelT to transport melatonin and maintain the uptake and mobilization of the biomolecule at higher concentration.

Keywords: Melatonin, transporter, phylogram, homology modelling, docking analysis, gene expression, bioinformatics

TSitologiya i Genetika
2025, vol. 59, no. 1, 81-83

Current Issue
Cytology and Genetics
2025, vol. 59, no. 1, 95–107,
doi: 10.3103/S0095452725010025

Full text and supplemented materials

References

Agirre, J., Atanasova, M., Bagdonas, H., Ballard, C.B., Beilsten-Edmands, A.B.J., Borges, R.J., Brown, D.G., et al., The CCP4 suite: integrative software for macromolecular crystallography, Acta Cryst. D, 2023, vol. 79, pp. 449–461.

Ahmad, I., Song, X., Hussein Ibrahim, M.E., Jamal, Y., Younas, M.U., Zhu, G., Zhou, G., and Adam Ali, A.Y., The role of melatonin in plant growth and metabolism, and its interplay with nitric oxide and auxin in plants under different types of abiotic stress, Front. Plant Sci., 2023, vol. 14, p. 1108507.

Arnao, M.B. and Hernandez-Ruiz, J., Melatonin in its relationship to plant hormones, Ann. Bot., 2018, vol. 121, pp. 195–207.

Arnao, M.B. and Hernandez-Ruiz, J., Melatonin: A new plant hormone and/ or a plant master regulator?, Trends Plant Sci., 2019, vol. 24, pp. 38–48.

Banerjee, A. and Roychoudhury, A., Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress, Protoplasma, 2017, vol. 254, pp. 3–16.

Banerjee, A. and Roychoudhury, A., Abiotic stress, generation of reactive oxygen species, and their consequences: An overview, in Revisiting the role of reactive oxygen species (ROS) in plants: ROS Boon or bane for plants?, Singh, V.P., Singh, S., Tripathi, D., Mohan Prasad, S., and Chauhan, D.K., Eds., United States: John Wiley and Sons, 2018, pp. 23–50.

Banerjee, A. and Roychoudhury, A., Melatonin application reduces fluoride uptake and toxicity in rice seedlings by altering abscisic acid, gibberellin, auxin and antioxidant homeostasis, Plant Physiol. Biochem., 2019a, vol. 145, pp. 164–173.

Banerjee, A. and Roychoudhury, A., Structural introspection of a putative fluoride transporter in plants, 3 Biotech., 2019b, vol. 9, p. 103.

Banerjee, A. and Roychoudhury, A., Molecular characterization of a phytomelatonin receptor and its overexpression as a ‘one-stop’ solution to nullify the toxic effects of hazardous inorganic agro-pollutants, Environ. Pollut., https://doi.org/10.1016/j.envpol.2024.125041

Baum, D., Trait evolution on a phylogenetic tree: Relatedness, similarity, and the myth of evolutionary advancement, Nat. Edu., 2008, vol. 1, p. 191.

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., et al., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res., 2014, vol. 42, pp. W252–W258.

Bilas, R., Szafran, K., Hnatuszko-Konka, K., and Kononowicz, A.K., Cis-regulatory elements used to control gene expression in plants, Plant Cell Tissue Organ Cult., 2016, vol. 127, pp. 269–287.

Blom, N., Gammeltoft, S., and Brunak, S., Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites, J. Mol. Biol., 1999, vol. 294, pp. 1351–1362.

Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., et al., Phylogeny.fr: robust phylogenetic analysis for the non-specialist, Nucleic Acids Res., 2008, vol. 36, pp. W465–W469.

Fan, J., Xie, Y., Zhang, Z., and Chen, L., Melatonin: A multifunctional factor in plants, Int. J. Mol. Sci., 2018, vol. 19, p. 1528.

Gu, Q., Chen, Z., Yu, X., Cui, W., Pan, J., et al., Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis, Plant Sci., 2017, vol. 261, pp. 28–37.

Gubler, F. and Jacobsen, J.V., Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene, Plant Cell, 1992, vol. 4, pp. 1435–1441.

Guerrero, D., Bautista, R., Villalobos, D.P., Cantón, F.R., and Claros, M.G., AlignMiner: a Web-based tool for detection of divergent regions in multiple sequence alignments of conserved sequences, Algorithms Mol. Biol., 2010, vol. 5, p. 24.

Hasan, M.K., Liu, C.-X., Pan, Y.-T., Ahammed, G.J., Qi, Z.-Y., and Zhou, J., Melatonin alleviates low-sulfur stress by promoting sulfur homeostasis in tomato plants, Sci. Rep., 2018, vol. 8, p. 10182.

Hevia, D., Gonzalez-Menendez, P., Quiros-Gonzalez, I., Miar, A., Rodriguez-Garcia, A., Tan, D.X., et al., Melatonin uptake through glucose transporters: a new target for melatonin inhibition of cancer, J. Pineal Res., 2015, vol. 58, pp. 234–250.

Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T., Plant cis-acting regulatory DNA elements (PLACE) database: 1999, Nucleic Acids Res., 1999, vol. 27, pp. 297–300.

Ho, B.K. and Brasseur, R., The Ramachandran plots of glycine and pre-proline, BMC Struct. Biol., 2005, vol. 5, p. 14.

Kandalepas, P.C., Mitchell, J.W., and Gillette, M.U., Melatonin signal transduction pathways require E-Box-mediated transcription of Per1 and Per2 to reset the SCN clock at dusk, PLoS One, 2016, p. 11, p. e0157824.

Kapp, K., Schrempf, S., Lemberg, M.K., and Dobberstein, B., Post-targeting functions of signal peptides, in Madame Curie Bioscience Database, Austin: Landes Bioscience, 2009.

Kawahara, Y., de la Bastide, M., Hamilton, J.P., Kanamori, H., McCombie, W.R., et al., Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data, Rice, 2013, vol. 6, p. 4.

Kiss, R.D., Sandor, M., and Szalai, F., Http://Mcule.com: A public web service for drug discovery, J Cheminf., 2012, vol. 4, p. 17.

Krogh, A., Larsson, B., von Heijne, G., and Sonnham-mer, E.L.L., Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes, J. Mol. Biol., 2001, vol. 305, pp. 567–580.

Lam, V.M., Daruwalla, K.R., Henderson, P.J., and Jones-Mortimer, M.C., Proton-linked D-xylose transport in Escherichia coli, J. Bacteriol., 1980, vol. 143, pp. 396–402.

McGuffin, L.J., Intrinsic disorder prediction from the analysis of multiple protein fold recognition models, Bioinformatics, 2008, vol. 24, pp. 1798–1804.

McWilliam, H., Li, W.Z., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., et al., Analysis Tool Web Services from the EMBL-EBI, Nucleic Acids Res., 2013, vol. 41, pp. W597–W600.

Meng, X.Y., Zhang, H.X., Mezei, M., and Cui, M., Molecular docking: A powerful approach for structure-based drug discovery, Curr. Comput. Aided Drug Des., 2011, vol. 7, pp. 146–157.

Moustafa-Farag, M., Almoneafy, A., Mahmoud, A., Elekelish, A., Arnao, M., Li, L., and Ai, S., Melatonin and its protective role against biotic stress impacts on plants, Biomolecules, 2019, vol. 10, p. 54.

Murch, S.J. and Erland, L.A.E., A systematic review of melatonin in plants: An example of evolution of literature, Front. Plant Sci., 2021, vol. 12, p. 683047.

Park, M.-S., Molecular dynamics simulations of the human glucose transporter GLUT1, PLoS One, 2015, vol. 10, p. e0125361.

Paul, S. and Roychoudhury, A., Transcriptome profiling of abiotic stress-responsive genes during cadmium chloride-mediated stress in two indica rice varieties, J. Plant Growth Regul., 2018, vol. 37, pp. 657–667.

Poeggeler, B., Thuermann, S., Dose, A., Schoenke, M., Burkhardt, S., and Hardeland, R., Melatonin’s unique radical scavenging properties–roles of its functional substituents as revealed by a comparison with its structural analogs, J. Pineal Res., 2002, vol. 33, pp. 20–30.

Robert, X. and Gouet, P., Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res., 2014, vol. 42, pp. W320–W324.

Wan, B., Lin, Y., and Mou, T., Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses, FEBS Lett., 2007, vol. 581, pp. 1179–1189.

Wang, Z.-Q., Wei, C.-C., Sharma, M., Pant, K., Crane, B.R., and Stuehr, D.J., A conserved Val to Ile switch near the heme pocket of animal and bacterial nitric-oxide synthases helps determine their distinct catalytic profiles, J. Biol. Chem., 2004, vol. 279, pp. 19018–19025.

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., and Schwede, T., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., 2018, vol. 46, pp. W296–W303.

Wei, J., Li, D.X., Zhang, J.R., Shan, C., Rengel, Z., Song, Z.B., and Chen, Q., Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana, J. Pineal Res., 2018, vol. 65, p. e12500.

Xu, B., Liu, Y., Lin, C., Dong, J., Liu, X., and He, Z., Reconstruction of the protein-protein interaction network for protein complexes identification by walking on the protein pair fingerprints similarity network, Front. Genet., 2018, vol. 9, p. 272.

Yeagle, P.L., Membrane biogenesis, In: Yeagle, P.L., Ed., The membranes of cells, United States: Academic, 2016, pp. 269–290.

Zhang, H.J., Zhang, N., Yang, R.C., et al., Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.), J. Pineal Res., 2014, vol. 57, pp. 269–279.

Zhao, J. and Hu, J., Melatonin: Current status and future perspectives in horticultural plants, Front. Plant Sci., 2023, vol. 14, p. 1140803.

Zou, X., Neuman, D., and Shen, Q.J., Interactions of two transcriptional repressors and two transcriptional activators in modulating gibberellin signaling in aleurone cells, Plant Physiol., 2008, vol. 148, pp. 176–186.