Цитологія і генетика 2025, том 59, № 1, 3-14
Cytology and Genetics 2025, том 59, № 1, 1–10, doi: https://www.doi.org/10.3103/S0095452725010062

Опосередкований Chaenomeles japonica синтез наночастинок срібла та їх кон’югатів з цефтріаксоном: характеристика та антибактеріальний ефект

Хромих Н.О., Лихолат Ю.В., Дідур О.О., Скляр Т.В., Балалаєв О.К., Борова М.М., Джаган В.М., Ємець А.І.

  1. Дніпровський національний університет імені Олеся Гончара, просп. Науки, 72, Дніпро, 49010, Україна
  2. Інститут геотехнічної механіки ім. М.С. Полякова НАН України, вул. Симферопольська, 2а, Дніпро, 49005, Україна
  3. Інститут харчової біотехнології та геноміки НАН України, вул. Байди­Вишневецького, 2а, Київ, 04123, Україна
  4. Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, просп. Науки, 41, Київ, 03028, Україна

Біосинтезовані металеві наночастинки мають унікальні властивості та активно вивчаються як по-тенційні антимікробні агенти. В даній роботі описано «зелений» синтез наночастинок срібла, здійснений із використанням водного екстракту з листя Chaenomeles japonica як біологічної матриці, а також отримання їх кон’югатів з антибіотиком цефтриаксоном. УФ-видимі спектри поглинання підтвердили формування біосинтезованих наночастинок срібла (Ch-AgNPs) та їх кон’югатів із цефтриаксоном (Ch-AgNPs-Cfx), що характеризують піками поглинання поверхневого плазмонного резонансу при 475 і 478 нм, відповідно. Аналіз інфрачервоних спектрів із перетворенням Фур’є виявив участь гідроксильних і карбоксильних функціональних груп фенольних і ароматичних сполук, флавоноїдів, терпеноїдів, спиртів і карбонових кислот рослинного екстракту в процесі біовідновлення Ag+ до Ag0, а також участь карбонільних та амінних груп білків у стабілізації наночастинок срібла. Антимікробну активність Ch-AgNPs, Ch-AgNPs-Cfx та цефтриаксону оцінювали, використовуючи штам Pseudomonas aeruginosa, стійкий до деяких цефалоспоринів. Виявлено дозозалежне інгібування P. aeruginosa за дії Ch-AgNPs та Ch-AgNPs-Cfx у діапазоні 2,5–20 мкг/диск, яке перевищувало активність цефтриаксону у тих самих дозах, характеризуючи обидва типи біосинтезованих наночастинок як перспективні бактерицидні агенти. Подальші дослідження Ch-AgNP та Ch-AgNPs-Cfx можуть бути спрямовані на створення ефективних засобів для зниження доз антибіотиків без втрати антибактеріальної активності проти стійких патогенів.

Ключові слова: наночастинки срібла, «зелений» синтез, Chaenomeles japonica, конюгати з антибіотиками, цефтриаксон, поверхневий плазмонний резонанс, ІЧ-спектроскопія, Pseudomonas aeruginosa, антимікробна активність

Цитологія і генетика
2025, том 59, № 1, 3-14

Current Issue
Cytology and Genetics
2025, том 59, № 1, 1–10,
doi: 10.3103/S0095452725010062

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

Adil, M., Khan, T., Aasim, M., et al., Evaluation of the antibacterial potential of silver nanoparticles synthesized through the interaction of antibiotic and aqueous callus extract of Fagonia indica, AMB Express, 2019, vol. 9, p. 75. https://doi.org/10.1186/s13568-019-0797-2

Adil, M., Alam Amin, S., et al., Efficient green silver nanoparticles-antibiotic combinations against antibiotic-resistant bacteria, AMB Express, 2023, vol. 13, p. 115. https://doi.org/10.1186/s13568-023-01619-7

Akhter, S., Rahman Ripon, A., et al., A systematic review on green synthesis of silver nanoparticles using plants extract and their bio-medical applications, Heliyon, 2024, vol. 10, no. 11, p. e29766. https://doi.org/10.1016/j.heliyon.2024.e29766

Al-Zahrani, S.A., Bhat, R.S., Al Rashed, S.A., et al., Green-synthesized silver nanoparticles with aqueous extract of green algae Chaetomorpha ligustica and its anticancer potential, Green Process. Synth., 2021, vol. 10, no. 1, pp. 711–721. https://doi.org/10.1515/gps-2021-0067

Amina, M., Al Musayeib, N.M., Alarfaj, N.A., et al., Antibacterial and immunomodulatory potentials of biosynthesized Ag, Au, Ag-Au bimetallic alloy nanoparticles using the Asparagus racemosus root extract, Nanomaterials, 2020, vol. 10, p. 2453. https://doi.org/10.3390/nano10122453

Bahramian, A., Khoshnood, S., Shariati, A., et al., Molecular characterization of the pilS2 gene and its association with the frequency of Pseudomonas aeruginosa plasmid pKLC102 and PAPI-1 pathogenicity island, Infect. Drug Resist., 2019, vol. 12, pp. 221–227. https://doi.org/10.2147/IDR.S188527

Borovaya, M., Naumenko, A., Horiunova, I., et al., “Green” synthesis of Ag2S nanoparticles, study of their properties and bioimaging applications, Appl. Nanosci., 2020, vol. 10, no. 12, pp. 4931–4940. https://doi.org/10.1007/s13204-020-01365-3

Borovaya, M., Horiunova, I., Plokhovska, S., et al., Synthesis, properties and bioimaging applications of silver-based quantum dots, Int. J. Mol. Sci., 2021, vol. 22, no. 22, p. 12202. https://doi.org/10.3390/ijms222212202

Breidenstein, E.B., De La Fuente-Núñez, C., and Hancock, R.E., Pseudomonas aeruginosa: all roads lead to resistance, Trends Microbiol., 2011, vol. 19, no. 8, pp. 419–426. https://doi.org/10.1016/j.tim.2011.04.005

Cook, M.A. and Wright, G.D., The past, present, and future of antibiotics, Sci. Transl. Med., 2022, vol. 14, no. 657, p. eabo7793. https://doi.org/10.1126/scitranslmed.abo7793

Dakal T.C., Kumar, A., Majumdar, R.S., et al., Mechanistic basis of antimicrobial actions of silver nanoparticles, Front. Microbiol., 2016, vol. 7, p. 1831. https://doi.org/10.3389/fmicb.2016.01831

Das, P., Ashraf, G.J., Baishya, T., et al., Formulation of silver nanoparticles using Duabanga grandiflora leaf extract and evaluation of their versatile therapeutic applications, Bioprocess Biosyst. Eng., 2024, vol. 47, pp. 1139–1150. https://doi.org/10.1007/s00449-024-02975-9

Dzhagan, V., Smirnov, O., Kovalenko, M., et al., Spectroscopic study of phytosynthesized ag nanoparticles and their activity as SERS substrate, Chemosensors, 2022, vol. 10, no. 4, p. 129. https://doi.org/10.3390/chemosensors10040129

Elemike, E.E., Onwudiwe, D.C., Fayemi, O.E., et al., Green synthesis and electrochemistry of Ag, Au, and Ag–Au bimetallic nanoparticles using golden rod (Solidago canadensis) leaf extract, Appl. Phys. A:Solids Surf., 2019, vol. 125, pp. 1–12. https://doi.org/10.1007/s00339-018-2348-0

EUCAST disk diffusion method for antimicrobial susceptibility testing – version 5.0, 2015. http://www.infectioncontrol.org.ua/wp-content/uploads/2016/03/11-EUCAST_2015_Slide_show_v_5.0_EUCAST_Disk_Test.pdf. Accessed July 10, 2024.

Ewunkem, A.J., Williams, Z.J., Johnson, N.S., et al., Exploring the “Carpenter” as a substrate for green synthesis: Biosynthesis and antimicrobial potential, GPD, 2023, vol. 2, no. 4, p. 2155. https://doi.org/10.36922/gpd.2155

Feizi, S., Cooksley, C.M., Nepal, R., et al., Silver nanoparticles as a bioadjuvant of antibiotics against biofilm-mediated infections with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in chronic rhinosinusitis patients, Pathology, 2022, vol. 54, no. 4, pp. 453–459. https://doi.org/10.1016/j.pathol.2021.08.014

Ghai, I., Electrophysiological insights into antibiotic translocation and resistance: the impact of outer membrane proteins, Membranes, 2024, vol. 14, no. 7, p. 161. https://doi.org/10.3390/membranes14070161

Gopinath, V., Priyadarshini, S., Loke, M.F., et al., Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity, Arabian J. Chem., 2017, vol. 10, pp. 1107–1117. https://doi.org/10.1016/j.arabjc.2015.11.011

Harshiny, M., Matheswaran, M., Arthanareeswaran, G., et al., Enhancement of antibacterial properties of silver nanoparticles–ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis, Ecotoxicol. Environ. Saf., 2015, vol. 121, pp. 135–141. https://doi.org/10.1016/j.ecoenv.2015.04.041

Hassan, M.H.A., Ismail, M.A., Moharram, A.M., et al., Synergistic effect of biogenic silver-nanoparticles with β lactam cefotaxime against resistant Staphylococcus arlettae AUMC b-163 isolated from t3a pharmaceutical cleanroom, Assiut, Egypt, Am. J. Microbiol. Res., 2016, vol. 4, no. 5, pp. 132–137. https://doi.org/10.12691/ajmr-4-5-1

Hemmati, S., Rashtiani, A., Zangeneh, M.M., et al., Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens, Polyhedron, 2019, vol. 158, pp. 8–14. https://doi.org/10.1016/j.poly.2018.10.049

Hossain, M.M., Polash, S.A., Takikawa, M., et al., Investigation of the antibacterial activity and in vivo cytotoxicity of biogenic silver nanoparticles as potent therapeutics, Front. Bioeng. Biotechnol., 2019, vol. 7, p. 239. https://doi.org/10.3389/fbioe.2019.00239

Karan, T., Gonulalan, Z., Erenler, R., et al., Green synthesis of silver nanoparticles using Sambucus ebulus leaves extract: Characterization, quantitative analysis of bioactive molecules, antioxidant and antibacterial activities, J. Mol. Struct., 2024, vol. 1296, no. 1, p. 136836. https://doi.org/10.1016/j.molstruc.2023.136836

Kargar, P.G., Shafiei, M., and Bagherzade, G., Transformation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furan carboxylic acid mediated by silver nanoparticles biosynthesized from Spartium junceum flower extract, Mater. Today Sustain., 2024, vol. 25, p. 100622. https://doi.org/10.1016/j.mtsust.2023.100622

Kathiravan, V., Ravi, S., and Ashokkumar, S., Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity, Spectrochim. Acta, Part A, 2014, vol. 130, pp. 116–121. https://doi.org/10.1016/j.saa.2014.03.107

Khan, Z.R., Assad, N., Naeem-ul-Hassan, M., et al., Aconitum lycoctonum L. (Ranunculaceae) mediated biogenic synthesis of silver nanoparticles as potential antioxidant, anti-inflammatory, antimicrobial and antidiabetic agents, BMC Chem., 2023, vol. 17, p. 128. https://doi.org/10.1186/s13065-023-01047-5

Khromykh, N.O., Lykholat, Y.V., Shupranova, L.V., et al., Interspecific differences of antioxidant ability of introduced Chaenomeles species with respect to adaptation to the steppe zone conditions, Biosyst. Divers, 2018, vol. 26, no. 2, pp. 132–138. https://doi.org/10.1542/011821

Lykholat, Y.V., Khromykh, N.O., Didur, O.O., et al., Chaenomeles speciosa fruit endophytic fungi isolation and characterization of their antimicrobial activity and the secondary metabolites composition, BJBAS, 2021, vol. 10, p. 83. https://doi.org/10.1186/s43088-021-00171-2

Mubeen, B., Ansar, A.N., Rasool, R., et al., Nanotechnology as a novel approach in combating microbes providing an alternative to antibiotics, Antibiotics, 2021, vol. 10, no. 12, p. 1473. https://doi.org/10.3390/antibiotics10121473

Mulani, M.S., Kamble, E.E., Kumkar, S.N., et al., Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review, Front. Microbiol., 2019, vol. 10, p. 539. https://doi.org/10.3389/fmicb.2019.00539

Munita, J.M. and Arias, C.A., Mechanisms of antibiotic resistance, Microbiol. Spectrum, 2016, vol. 4, no. 2. https://doi.org/10.1128/microbiolspec.vmbf-0016-2015

Oh, K.H., Soshnikova, V., Markus, J., et al., Biosynthesized gold and silver nanoparticles by aqueous fruit extract of Chaenomeles sinensis and screening of their biomedical activities, Artif. Cells Nanomed. Biotechnol., 2018, vol. 46, no. 3, pp. 599–606. https://doi.org/10.1080/21691401.2017.1332636

Qing, Y., Cheng, L., Li, R., et al., Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies, Int. J. Nanomed., 2018, vol. 13, pp. 3311–3327. https://doi.org/10.2147/IJN.S165125

Raj, S., Mali, S.C., and Trivedi, R., Green synthesis and characterization of silver nanoparticles using Enicostemma axillare (Lam.) leaf extract, BBRC, 2018, vol. 503, no. 4, pp. 2814–2819. https://doi.org/10.1016/j.bbrc.2018.08.045

Reddy, N.J., Vali, D.N., Rani, M., et al., Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit, Mater. Sci. Eng., C, 2014, vol. 34, pp. 115–122. https://doi.org/10.1016/j.msec.2013.08.039

Reddy, N.V., Li, H., Hou, T., et al., Phytosynthesis of silver nanoparticles using perilla frutescens leaf extract: characterization and evaluation of antibacterial, antioxidant, and anticancer activities, Int. J. Nanomed., 2021, vol. 16, pp. 15–29. https://doi.org/10.2147/IJN.S265003

Ren, Y.-Y., Yang, H., Wang, T., et al., Bio-synthesis of silver nanoparticles with antibacterial activity, Mater. Chem. Phys., 2019, vol. 235, p. 121746. https://doi.org/10.1016/j.matchemphys.2019.121746

Sahana, R., Kiruba Daniel, S.C.G., Sankar, S.G., et al., Formulation of bactericidal cold cream against clinical pathogens using Cassia auriculata flower extract-synthesized Ag nanoparticles, Green Chem. Lett. Rev., 2014, vol. 7, no. 1, pp. 64–72. https://doi.org/10.1080/17518253.2014.895859

Sánchez-López, E., Gomes, D., Esteruelas, G., et al., Metal-based nanoparticles as antimicrobial agents: An overview, Nanomaterials, 2020, vol. 10, no. 2, p. 292. https://doi.org/10.3390/nano10020292

Saratale, G.D., Saratale, R.G., Benelli, G., et al., Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria, J. Clust. Sci., 2017, vol. 28, pp. 1709–1727. https://doi.org/10.1007/s10876-017-1179-z

Shah, S., Gaikwad, S., Nagar, S., et al., Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa, Biofouling, 2019, vol. 35, no. 1, pp. 34–49. https://doi.org/10.1080/08927014.2018.1563686

Shanmuganathan, R., MubarakAli, D., Prabakar, D., et al., An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach, Environ. Sci. Pollut. Res., 2018, vol. 25, no. 11, pp. 10362–10370. https://doi.org/10.1007/s11356-017-9367-9

Singh, J., Dutta, T., Kim, K.-H., et al., “Green” synthesis of metals and their oxide nanoparticles: applications for environmental remediation, J. Nanobiotechnol., 2018, vol. 16, no. 84, pp. 1–24. https://doi.org/10.1186/s12951-018-0408-4

Singh, P. and Mijakovic, I., Rowan berries: a potential source for green synthesis of extremely monodisperse gold and silver nanoparticles and their antimicrobial property, Pharmaceutics, 2022, vol. 14, no. 1, p. 82. https://doi.org/10.3390/pharmaceutics14010082

Smekalova, M., Aragon, V., Panacek, A., et al., Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens, Vet. J., 2016, vol. 209, pp. 174–179. https://doi.org/10.1016/j.tvjl.2015.10.032

Sun, Q., Cai, X., Li, J., et al., Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity, Colloids Surf, A, 2014, vol. 444, pp. 226–231. https://doi.org/10.1016/j.colsurfa.2013.12.065

U Din, M.M., Batool, A., Ashraf, R.S., et al., Green synthesis and characterization of biologically synthesized and antibiotic-conjugated silver nanoparticles followed by post-synthesis assessment for antibacterial and antioxidant applications, ACS Omega, 2024, vol. 9, no. 17, pp. 18909–18921. https://doi.org/10.1021/acsomega.3c08927

Vus, K., Tarabara, U., Danylenko, I., et al., Silver nanoparticles as inhibitors of insulin amyloid formation: A fluorescence study, J. Mol. Liq., 2021, vol. 342, p. 117508. https://doi.org/10.1016/j.molliq.2021.117508

Walsh, D.J., Livinghouse, T., Goeres, D.M., et al., Antimicrobial activity of naturally occurring phenols and derivatives against biofilm and planktonic bacteria, Front. Chem., 2019, vol. 7, p. 653. https://doi.org/10.3389/fchem.2019.00653

WHO, World Health Organization, 2023. Antibiotic resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Assessed March 8, 2024.

Yemets, A., Plokhovska, S., Pushkarova, N., et al., Quantum dot-antibody conjugates for immunofluorescence studies of biomolecules and subcellular structures, J. Fluoresc., 2022, vol. 32, no. 5, pp. 1713–1723. https://doi.org/10.1007/s10895-022-02968-5

Yin, I.X., Zhang, J., Zhao, I.S., et al., The antibacterial mechanism of silver nanoparticles and its application in dentistry, Int. J. Nanomed., 2020, vol. 15, pp. 2555–2562. https://doi.org/10.2147/IJN.S246764

Yuan, P., Ding, X., Yang, Y.Y., et al., Metal nanoparticles for diagnosis and therapy of bacterial infection, Adv. Health Mater., 2018, vol. 7, no. 13, p. 1701392. https://doi.org/10.1002/adhm.201701392