Цитологія і генетика 2025, том 59, № 2, 44-51
Cytology and Genetics 2025, том 59, № 2, 179–185, doi: https://www.doi.org/10.3103/S0095452725020100

Фізичне картування послідовностей 5S та 45S рДНК методом FISH у видів роду Iris L.

Твардовська М.О., Алхімова О.Г., Кунах В.А.

ul>
  • Інститут молекулярної біології і генетики НАН України, вул. Академіка Заболотного 150, Київ, 03143, Україна
  • Вперше методом FISH проведено картування послідовностей 5S та 45S рДНК у двох видів роду Iris L. Виявлено 10 мажорних сигналів 45S рДНК на хромосомах та інтерфазних ядрах Iris рumila L. та 6 сигналів у Iris pseudopumila Tineo. Знайдено 12 локусів 5S рДНК у I. рumila, тоді як у I. pseudopumila – лише два. Встановлено високий рівень міксоплоїдії у рослин I. рumila, що, ймовірно, пов’язано з гібридним походженням виду. Зважаючи на отримані результати, цілком вірогідно, що I. pseudopumila може бути однією з батьківських форм алотетраплоїдного I. рumila. Одержані дані можуть бути основою для наступних еволюційних досліджень цього виду. Обговорюються еволюційні зміни диплоїдних предкових форм після утворення алополіплоїдів і значення рибосомних послідовностей ДНК у виявленні цих змін.

    Ключові слова: Iris рumila L., Iris pseudopumila Tineo, міксоплоїдія, флуоресцентна гібридизація in situ (FISH), гени 5S та 45S рДНК

    Цитологія і генетика
    2025, том 59, № 2, 44-51

    Current Issue
    Cytology and Genetics
    2025, том 59, № 2, 179–185,
    doi: 10.3103/S0095452725020100

    Повний текст та додаткові матеріали

    У вільному доступі: PDF  

    Цитована література

    Alkhimova, O.G., Mazurok, N.A., Potapova, T.A., et al., Diverse patterns of the tandem repeats organization in rye chromosomes, Chromosoma, 2004, vol. 113, pp. 42–52. https://doi.org/10.1007/s00412-004-0294-4

    Álvarez, I. and Wendel, J.F., Ribosomal ITS sequences and plant phylogenetic inference, Mol. Phylogenet. Evol., 2003, vol. 29, pp. 417–434. https://doi.org/10.1016/S1055-7903(03)00208-2

    Amosova, A.V., Bolsheva, N.L., Zoshchuk, S.A., et al., Comparative molecular cytogenetic characterization of seven Deschampsia (Poaceae) species, PLoS One, 2017, vol. 12, p. e0175760. https://doi.org/10.1371/journal.pone.0175760

    Anderson, E., The species problem in Iris, Ann. Mo. Bot. Gard., 1936, vol. 23, pp. 457–509.

    Andreieva, S.V., Korets, K.V., and Alkhimova, O.G., Chromosomal abnormalities in bone marrow cells in relapse of chronic lymphocytic leukemia, Nucleus, 2017, vol. 60, pp. 361–369. https://doi.org/10.1007/s13237-017-0225-4

    Barciszewska, M.Z., Szymański, M., Erdmann, V.A., and Barciszewski, J., Structure and functions of 5S rRNA, Acta Biochim. Pol., 2001, vol. 48, pp. 191–198. https://doi.org/10.18388/abp.2001_5126

    Chen, Z.J., Ha, M., and Soltis, D., Polyploidy: genome obesity and its consequences, New Phytol., 2007, vol. 174, pp. 717–720. https://doi.org/10.1111/j.1469-8137.2007.02084.x

    Choi, B., Weiss-Schneeweiss, H., Temsch, E.M., et al., Genome size and chromosome number evolution in Korean Iris L. species (Iridaceae Juss.), Plants, 2020, vol. 9, p. 1284. https://doi.org/10.3390/plants9101284

    Chrtek, J., Mráz, P., Belyayev, A., et al., Evolutionary history and genetic diversity of apomictic allopolyploids in Hieracium s.str.: morphological versus genomic features, Am. J. Bot., 2020, vol. 107, pp. 66–90. https://doi.org/10.1002/ajb2.1413

    Dodsworth, S., Leitch, A.R., and Leitch, I.J., Genome size diversity in angiosperms and its influence on gene space, Curr. Opin. Genet. Dev., 2015, vol. 35, pp. 73–78. https://doi.org/10.1016/j.gde.2015.10.006

    Feliner, G.N. and Rosselló, J.A., Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants, Mol. Phylogenet. Evol., 2007, vol. 44, pp. 911–919. https://doi.org/10.1016/j.ympev.2007.01.013

    Figueroa, D.M., Amarillo, I.E., and Bass, H.W., Cytogenetic Mapping in Plants, in Plant Cytogenetics, New York: Springer New York, 2012, pp. 79–119.

    Garcia, S., Kovařík, A., Leitch, A.R., and Garnatje, T., Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database, Plant J., 2017, vol. 89, pp. 1020–1030. https://doi.org/10.1111/tpj.13442

    Garcia, S., Wendel, J.F., Borowska-Zuchowska, N., et al., The utility of graph clustering of 5S ribosomal DNA homoeologs in plant allopolyploids, homoploid hybrids, and cryptic introgressants, Front. Plant Sci., 2020, vol. 11. https://doi.org/10.3389/fpls.2020.00041

    Guetat, A., Rosato, M., Rosello, J.A., and Boussaid, M., Karyotype analysis in Allium roseum L. (Alliaceae) using fluorescent in situhybridization of rDNA sites and conventional stainings, Turk. J. Bot., 2015, vol. 39, pp. 796–807. https://doi.org/10.3906/bot-1408-50

    Hasterok, R., Wolny, E., Hostawa, M., et al., Comparative Analysis of rDNA distribution in chromosomes of various species of Brassicaceae, Ann. Bot., 2006, vol. 97, pp. 205–216. https://doi.org/10.1093/aob/mcj031

    Hemleben, V., Grierson, D., Borisjuk, N., et al., Personal perspectives on plant ribosomal RNA Genes research: from precursor-rRNA to molecular evolution, Front. Plant Sci., 2021, vol. 12. https://doi.org/10.3389/fpls.2021.797348

    Heslop-Harrison, J.S., (Pat) and Schwarzacher, T., Organisation of the plant genome in chromosomes, Plant J., 2011, vol. 66, pp. 18–33. https://doi.org/10.1111/j.1365-313X.2011.04544.x

    Jiang, J. and Gill, B.S., Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research, Genome, 2006, vol. 49, pp. 1057–1068

    Kovarik, A., Dadejova, M., Lim, Y.K., et al., Evolution of rDNA in Nicotiana allopolyploids: A potential link between rDNA homogenization and epigenetics, Ann. Bot., 2008, vol. 101, pp. 815–823. https://doi.org/10.1093/aob/mcn019

    Kunakh, V.A., Biotechnology of medicinal plants, in Genetic, Physiological and Biochemical Basis, Logos, 2005.

    Lacadena, J.R., Cermeno, M.C., Orellana, J., and Santos, J.L., Evidence for wheat-rye nucleolar competition (amphiplasty) in triticale by silver-staining procedure, Theor. Appl. Genet., 1984, vol. 67, pp. 207–213. https://doi.org/10.1007/BF00317037

    Lakshmanan, P.S., Van Laere, K., Eeckhaut, T., et al., Karyotype analysis and visualization of 45S rRNA genes using fluorescence in situ hybridization in aroids (Araceae), Comp. Cytogenet., 2015, vol. 9, pp. 145–160. https://doi.org/10.3897/CompCytogen.v9i2.4366

    Lattier, J.D., Chen, H., and Contreras, R.N., Variation in genome size, ploidy, stomata, and rDNA signals in althea, J. Am. Soc. Hortic. Sci., 2019, vol. 144, pp. 130–140. https://doi.org/10.21273/JASHS04618-18

    Lim, K.Y., Matyasek, R., Kovarik, A., and Leitch, A., Parental origin and genome evolution in the allopolyploid iris versicolor, Ann. Bot., 2007, vol. 100, pp. 219–224. https://doi.org/10.1093/aob/mcm116

    Liu, Z., Zhang, D., Wang, X., et al., Intragenomic and interspecific 5S rDNA sequence variation in five Asian pines, Am. J. Bot., 2003, vol. 90, pp. 17–24. https://doi.org/10.3732/ajb.90.1.17

    Mandáková, T. and Lysak, M.A., Post-polyploid diploidization and diversification through dysploid changes, Curr. Opin. Plant Biol., 2018, vol. 42, pp. 55–65. https://doi.org/10.1016/j.pbi.2018.03.001

    McCann, J., Macas, J., Novák, P., et al., Differential genome size and repetitive DNA evolution in diploid species of Melampodium sect. melampodium (Asteraceae), Front. Plant Sci., 2020, vol. 11. https://doi.org/10.3389/fpls.2020.00362

    McStay, B., Nucleolar organizer regions: genomic ‘dark matter’ requiring illumination, Genes Dev., 2016, vol. 30, pp. 1598–1610. https://doi.org/10.1101/gad.283838.116

    Mitra, J., Karyotype analysis of bearded iris, Bot. Gaz., 1956, vol. 117, pp. 265–293. https://doi.org/10.1086/335916

    Mizuochi, H., Marasek, A., and Okazaki, K., Molecular cloning of Tulipa fosteriana rDNA and subsequent FISH analysis yields cytogenetic organization of 5S rDNA and 45S rDNA in T. gesneriana and T. fosteriana, Euphytica, 2007, vol. 155, p. 235. https://doi.org/10.1007/s10681-006-9325-y

    O’Kane, S.L., Schaal, B.A., and Al-Shehbaz, I.A., The origins of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences, Syst. Bot., 1996, vol. 21, pp. 559–566. https://doi.org/10.2307/2419615

    Park, I., Choi, B., Weiss-Schneeweiss, H., et al., Comparative analyses of complete chloroplast genomes and karyotypes of allotetraploid Iris koreana and its putative diploid parental species (Iris series Chinenses, Iridaceae), Int. J. Mol. Sci., 2022, vol. 23, p. 10929. https://doi.org/10.3390/ijms231810929

    Pikaard, C.S., Genomic change and gene silencing in polyploids, Trends Genet., 2001, vol. 17, pp. 675–677. https://doi.org/10.1016/S0168-9525(01)02545-8

    Rosato, M., Moreno-Saiz, J.C., Galián, J.A., and Rosselló, J.A., Evolutionary site-number changes of ribosomal DNA loci during speciation: complex scenarios of ancestral and more recent polyploid events, AoB PLANTS, 2015, vol. 7, p. plv135. https://doi.org/10.1093/aobpla/plv135

    Rosselló, J.A., Maravilla, A.J., and Rosato, M., The nuclear 35S rDNA world in plant systematics and evolution: A primer of cautions and common misconceptions in cytogenetic studies, Front. Plant Sci., 2022, vol. 13. https://doi.org/10.3389/fpls.2022.788911

    Schwarzacher, T., Liu, Q., (Pat) and Heslop-Harrison, J.S., Plant cytogenetics: from chromosomes to cytogenomics, in Methods in Molecular Biology, Humana, 2023, pp 3–21.

    Senderowicz, M., Nowak, T., Weiss-Schneeweiss, H., et al., Molecular and cytogenetic analysis of rDNA evolution in Crepis sensu lato, Int. J. Mol. Sci., 2022, vol. 23, p. 3643. https://doi.org/10.3390/ijms23073643

    Shahbazi, M., Majka, J., Kubíková, D., et al., Cytonuclear interplay in auto- and allopolyploids: a multifaceted perspective from the Festuca-Lolium complex, Plant J., 2024, vol. 118, pp. 1102–1118. https://doi.org/10.1111/tpj.16659

    Sharma, A.K. and Talukdar, C., Chromosome studies in members of the iridaceae and their mechanism of speciation, Genetica, 1960, vol. 31, pp. 340–384. https://doi.org/10.1007/BF01984436

    Simeone, M.C., Cardoni, S., Piredda, R., et al., Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation, PeerJ, 2018, vol. 6, p. e5793. https://doi.org/10.7717/peerj.5793

    Simonet, M., Nouvelles recherches cytologiques et génétiques chez les Iris, Ann. Sci. Nat. Bot., 1934, vol. 16, pp. 229–383

    Twardovska, M.O., Andreev, I.O., and Kunakh, V.A., Karyotypes of species of the genus Iris from the flora of Ukraine, Ukr. Bot. J., 2014, vol. 71, pp. 581–589. https://doi.org/10.15407/ukrbotj71.05.581

    Twardovska, M.O., Andreev, I.O., and Kunakh, V.A., Intraspecific chromosomal polymorphism of Iris pumila L. from the territory of Ukraine, Cytol. Genet., 2015, vol. 49, pp. 322–327. https://doi.org/10.3103/S0095452715050096

    Twardovska, M.O., Andreev, I.O., and Kunakh, V.A., Introduction into in vitro culture and cytogenetic analysis of Iris attica Boiss. & Heldr. and Iris pseudopumila Tineo plants, Visn. Ukr. Tov. Genet. Sel., 2018, vol. 16, pp. 203–211. https://doi.org/10.7124/visnyk.utgis.16.2.1058

    Twardovska, M.O., Andreev, I.O., and Kunakh, V.A., Identification of putative origin of Iris pumila L. karyotype, Fakt. Eksp. Evol. Org., 2019, vol. 25, pp. 20–25. https://doi.org/10.7124/FEEO.v25.1133

    Valárik, M., Bartoš, J., Kovářová, P., et al., High-resolution FISH on super-stretched flow-sorted plant chromosomes, Plant J., 2004, vol. 37, pp. 940–950. https://doi.org/10.1111/j.1365-313X.2003.02010.x

    Van Laere, K., Van Huylenbroeck, J., and Van Bockstaele, E., Karyotype analysis and physical mapping of 45S rRNA genes in Hydrangea species by fluorescence in situ hybridization, Plant Breed., 2008, vol. 127, pp. 301–307. https://doi.org/10.1111/j.1439-0523.2007.01456.x

    Vershinin, A.V., Alkhimova, A.G., Heslop-Harrison, J.S., et al., Different patterns in molecular evolution of the Triticeae, Hereditas, 2001, vol. 135, pp. 153–160. https://doi.org/10.1111/j.1601-5223.2001.t01-1-00153.x

    Volkov, R.A., Borisjuk, N.V., Panchuk, I.I., et al., Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum, Mol. Biol. Evol., 1999, vol. 16, pp. 311–320. https://doi.org/10.1093/oxfordjournals.molbev.a026112

    Volkov, R.A., Komarova, N.Y., and Hemleben, V., Ribosomal DNA in plant hybrids: Inheritance, rearrangement, expression, Syst. Biodiversity, 2007, vol. 5, pp. 261–276. https://doi.org/10.1017/S1477200007002447

    Volkov, R.A., Panchuk, I.I., Borisjuk, N.V., et al., Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna, BMC Plant Biol., 2017, vol. 17, p. 21. https://doi.org/10.1186/s12870-017-0978-6

    Vozárová, R., Herklotz, V., Kovařík, A., et al., Ancient origin of two 5S rDNA families dominating in the genus Rosa and their behavior in the Canina-type meiosis, Front. Plant Sci., 2021, vol. 12. https://doi.org/10.3389/fpls.2021.643548

    Wang, W., Zhang, X., Garcia, S., et al., Intragenomic rDNA variation – The product of concerted evolution, mutation, or something in between?, Heredity, 2023, vol. 131, pp. 179–188. https://doi.org/10.1038/s41437-023-00634-5

    Wendel, J.F., The wondrous cycles of polyploidy in plants, Am. J. Bot., 2015, vol. 102, pp. 1753–1756. https://doi.org/10.3732/ajb.1500320

    Xiong, Z., Gaeta, R.T., and Pires, J.C., Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 7908–7913. https://doi.org/10.1073/pnas.1014138108

    Yang, S., Nam, B.-M., Jang, J., et al., A checklist of Gasan Mt.: an online platform for virtual specimens, Kor. J. Plant Taxon., 2020, vol. 50, pp. 453–474. https://doi.org/10.11110/kjpt.2020.50.4.453