SUMMARY. For the first time, the FISH was used to map 5S and 45S rDNA sequences in two species of the genus Iris L. 10 major 45S rDNA sites were detected on chromosomes and interphase nuclei of Iris pumila L. and 6 sites in Iris pseudopumila Tineo. 12 loci 5S rDNA were found in I. pumila, while only two in I. pseudopumila. A high level of mixoploidy was revealed in I. pumila plants, which is probably associated with the hybrid origin of the species. Given the results obtained, it is quite likely that I. pseudopumila may be one of the parental forms of the allotetraploid I. pumila. The data obtained are the basis for further evolutionary studies of this species. The evolutionary changes of diploid ancestral forms following the formation of allopolyploids, and the importance of ribosomal DNA sequences in detecting these changes are discussed.
Keywords: Iris рumila L., Iris pseudopumila Tineo, aneuploidy, fluorescence in situ hybridization (FISH), 5S and 45S rDNA genes

Full text and supplemented materials
Free full text: PDFReferences
Alkhimova, O.G., Mazurok, N.A., Potapova, T.A., et al., Diverse patterns of the tandem repeats organization in rye chromosomes, Chromosoma, 2004, vol. 113, pp. 42–52. https://doi.org/10.1007/s00412-004-0294-4
Álvarez, I. and Wendel, J.F., Ribosomal ITS sequences and plant phylogenetic inference, Mol. Phylogenet. Evol., 2003, vol. 29, pp. 417–434. https://doi.org/10.1016/S1055-7903(03)00208-2
Amosova, A.V., Bolsheva, N.L., Zoshchuk, S.A., et al., Comparative molecular cytogenetic characterization of seven Deschampsia (Poaceae) species, PLoS One, 2017, vol. 12, p. e0175760. https://doi.org/10.1371/journal.pone.0175760
Anderson, E., The species problem in Iris, Ann. Mo. Bot. Gard., 1936, vol. 23, pp. 457–509.
Andreieva, S.V., Korets, K.V., and Alkhimova, O.G., Chromosomal abnormalities in bone marrow cells in relapse of chronic lymphocytic leukemia, Nucleus, 2017, vol. 60, pp. 361–369. https://doi.org/10.1007/s13237-017-0225-4
Barciszewska, M.Z., Szymański, M., Erdmann, V.A., and Barciszewski, J., Structure and functions of 5S rRNA, Acta Biochim. Pol., 2001, vol. 48, pp. 191–198. https://doi.org/10.18388/abp.2001_5126
Chen, Z.J., Ha, M., and Soltis, D., Polyploidy: genome obesity and its consequences, New Phytol., 2007, vol. 174, pp. 717–720. https://doi.org/10.1111/j.1469-8137.2007.02084.x
Choi, B., Weiss-Schneeweiss, H., Temsch, E.M., et al., Genome size and chromosome number evolution in Korean Iris L. species (Iridaceae Juss.), Plants, 2020, vol. 9, p. 1284. https://doi.org/10.3390/plants9101284
Chrtek, J., Mráz, P., Belyayev, A., et al., Evolutionary history and genetic diversity of apomictic allopolyploids in Hieracium s.str.: morphological versus genomic features, Am. J. Bot., 2020, vol. 107, pp. 66–90. https://doi.org/10.1002/ajb2.1413
Dodsworth, S., Leitch, A.R., and Leitch, I.J., Genome size diversity in angiosperms and its influence on gene space, Curr. Opin. Genet. Dev., 2015, vol. 35, pp. 73–78. https://doi.org/10.1016/j.gde.2015.10.006
Feliner, G.N. and Rosselló, J.A., Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants, Mol. Phylogenet. Evol., 2007, vol. 44, pp. 911–919. https://doi.org/10.1016/j.ympev.2007.01.013
Figueroa, D.M., Amarillo, I.E., and Bass, H.W., Cytogenetic Mapping in Plants, in Plant Cytogenetics, New York: Springer New York, 2012, pp. 79–119.
Garcia, S., Kovařík, A., Leitch, A.R., and Garnatje, T., Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database, Plant J., 2017, vol. 89, pp. 1020–1030. https://doi.org/10.1111/tpj.13442
Garcia, S., Wendel, J.F., Borowska-Zuchowska, N., et al., The utility of graph clustering of 5S ribosomal DNA homoeologs in plant allopolyploids, homoploid hybrids, and cryptic introgressants, Front. Plant Sci., 2020, vol. 11. https://doi.org/10.3389/fpls.2020.00041
Guetat, A., Rosato, M., Rosello, J.A., and Boussaid, M., Karyotype analysis in Allium roseum L. (Alliaceae) using fluorescent in situhybridization of rDNA sites and conventional stainings, Turk. J. Bot., 2015, vol. 39, pp. 796–807. https://doi.org/10.3906/bot-1408-50
Hasterok, R., Wolny, E., Hostawa, M., et al., Comparative Analysis of rDNA distribution in chromosomes of various species of Brassicaceae, Ann. Bot., 2006, vol. 97, pp. 205–216. https://doi.org/10.1093/aob/mcj031
Hemleben, V., Grierson, D., Borisjuk, N., et al., Personal perspectives on plant ribosomal RNA Genes research: from precursor-rRNA to molecular evolution, Front. Plant Sci., 2021, vol. 12. https://doi.org/10.3389/fpls.2021.797348
Heslop-Harrison, J.S., (Pat) and Schwarzacher, T., Organisation of the plant genome in chromosomes, Plant J., 2011, vol. 66, pp. 18–33. https://doi.org/10.1111/j.1365-313X.2011.04544.x
Jiang, J. and Gill, B.S., Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research, Genome, 2006, vol. 49, pp. 1057–1068
Kovarik, A., Dadejova, M., Lim, Y.K., et al., Evolution of rDNA in Nicotiana allopolyploids: A potential link between rDNA homogenization and epigenetics, Ann. Bot., 2008, vol. 101, pp. 815–823. https://doi.org/10.1093/aob/mcn019
Kunakh, V.A., Biotechnology of medicinal plants, in Genetic, Physiological and Biochemical Basis, Logos, 2005.
Lacadena, J.R., Cermeno, M.C., Orellana, J., and Santos, J.L., Evidence for wheat-rye nucleolar competition (amphiplasty) in triticale by silver-staining procedure, Theor. Appl. Genet., 1984, vol. 67, pp. 207–213. https://doi.org/10.1007/BF00317037
Lakshmanan, P.S., Van Laere, K., Eeckhaut, T., et al., Karyotype analysis and visualization of 45S rRNA genes using fluorescence in situ hybridization in aroids (Araceae), Comp. Cytogenet., 2015, vol. 9, pp. 145–160. https://doi.org/10.3897/CompCytogen.v9i2.4366
Lattier, J.D., Chen, H., and Contreras, R.N., Variation in genome size, ploidy, stomata, and rDNA signals in althea, J. Am. Soc. Hortic. Sci., 2019, vol. 144, pp. 130–140. https://doi.org/10.21273/JASHS04618-18
Lim, K.Y., Matyasek, R., Kovarik, A., and Leitch, A., Parental origin and genome evolution in the allopolyploid iris versicolor, Ann. Bot., 2007, vol. 100, pp. 219–224. https://doi.org/10.1093/aob/mcm116
Liu, Z., Zhang, D., Wang, X., et al., Intragenomic and interspecific 5S rDNA sequence variation in five Asian pines, Am. J. Bot., 2003, vol. 90, pp. 17–24. https://doi.org/10.3732/ajb.90.1.17
Mandáková, T. and Lysak, M.A., Post-polyploid diploidization and diversification through dysploid changes, Curr. Opin. Plant Biol., 2018, vol. 42, pp. 55–65. https://doi.org/10.1016/j.pbi.2018.03.001
McCann, J., Macas, J., Novák, P., et al., Differential genome size and repetitive DNA evolution in diploid species of Melampodium sect. melampodium (Asteraceae), Front. Plant Sci., 2020, vol. 11. https://doi.org/10.3389/fpls.2020.00362
McStay, B., Nucleolar organizer regions: genomic ‘dark matter’ requiring illumination, Genes Dev., 2016, vol. 30, pp. 1598–1610. https://doi.org/10.1101/gad.283838.116
Mitra, J., Karyotype analysis of bearded iris, Bot. Gaz., 1956, vol. 117, pp. 265–293. https://doi.org/10.1086/335916
Mizuochi, H., Marasek, A., and Okazaki, K., Molecular cloning of Tulipa fosteriana rDNA and subsequent FISH analysis yields cytogenetic organization of 5S rDNA and 45S rDNA in T. gesneriana and T. fosteriana, Euphytica, 2007, vol. 155, p. 235. https://doi.org/10.1007/s10681-006-9325-y
O’Kane, S.L., Schaal, B.A., and Al-Shehbaz, I.A., The origins of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences, Syst. Bot., 1996, vol. 21, pp. 559–566. https://doi.org/10.2307/2419615
Park, I., Choi, B., Weiss-Schneeweiss, H., et al., Comparative analyses of complete chloroplast genomes and karyotypes of allotetraploid Iris koreana and its putative diploid parental species (Iris series Chinenses, Iridaceae), Int. J. Mol. Sci., 2022, vol. 23, p. 10929. https://doi.org/10.3390/ijms231810929
Pikaard, C.S., Genomic change and gene silencing in polyploids, Trends Genet., 2001, vol. 17, pp. 675–677. https://doi.org/10.1016/S0168-9525(01)02545-8
Rosato, M., Moreno-Saiz, J.C., Galián, J.A., and Rosselló, J.A., Evolutionary site-number changes of ribosomal DNA loci during speciation: complex scenarios of ancestral and more recent polyploid events, AoB PLANTS, 2015, vol. 7, p. plv135. https://doi.org/10.1093/aobpla/plv135
Rosselló, J.A., Maravilla, A.J., and Rosato, M., The nuclear 35S rDNA world in plant systematics and evolution: A primer of cautions and common misconceptions in cytogenetic studies, Front. Plant Sci., 2022, vol. 13. https://doi.org/10.3389/fpls.2022.788911
Schwarzacher, T., Liu, Q., (Pat) and Heslop-Harrison, J.S., Plant cytogenetics: from chromosomes to cytogenomics, in Methods in Molecular Biology, Humana, 2023, pp 3–21.
Senderowicz, M., Nowak, T., Weiss-Schneeweiss, H., et al., Molecular and cytogenetic analysis of rDNA evolution in Crepis sensu lato, Int. J. Mol. Sci., 2022, vol. 23, p. 3643. https://doi.org/10.3390/ijms23073643
Shahbazi, M., Majka, J., Kubíková, D., et al., Cytonuclear interplay in auto- and allopolyploids: a multifaceted perspective from the Festuca-Lolium complex, Plant J., 2024, vol. 118, pp. 1102–1118. https://doi.org/10.1111/tpj.16659
Sharma, A.K. and Talukdar, C., Chromosome studies in members of the iridaceae and their mechanism of speciation, Genetica, 1960, vol. 31, pp. 340–384. https://doi.org/10.1007/BF01984436
Simeone, M.C., Cardoni, S., Piredda, R., et al., Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation, PeerJ, 2018, vol. 6, p. e5793. https://doi.org/10.7717/peerj.5793
Simonet, M., Nouvelles recherches cytologiques et génétiques chez les Iris, Ann. Sci. Nat. Bot., 1934, vol. 16, pp. 229–383
Twardovska, M.O., Andreev, I.O., and Kunakh, V.A., Karyotypes of species of the genus Iris from the flora of Ukraine, Ukr. Bot. J., 2014, vol. 71, pp. 581–589. https://doi.org/10.15407/ukrbotj71.05.581
Twardovska, M.O., Andreev, I.O., and Kunakh, V.A., Intraspecific chromosomal polymorphism of Iris pumila L. from the territory of Ukraine, Cytol. Genet., 2015, vol. 49, pp. 322–327. https://doi.org/10.3103/S0095452715050096
Twardovska, M.O., Andreev, I.O., and Kunakh, V.A., Introduction into in vitro culture and cytogenetic analysis of Iris attica Boiss. & Heldr. and Iris pseudopumila Tineo plants, Visn. Ukr. Tov. Genet. Sel., 2018, vol. 16, pp. 203–211. https://doi.org/10.7124/visnyk.utgis.16.2.1058
Twardovska, M.O., Andreev, I.O., and Kunakh, V.A., Identification of putative origin of Iris pumila L. karyotype, Fakt. Eksp. Evol. Org., 2019, vol. 25, pp. 20–25. https://doi.org/10.7124/FEEO.v25.1133
Valárik, M., Bartoš, J., Kovářová, P., et al., High-resolution FISH on super-stretched flow-sorted plant chromosomes, Plant J., 2004, vol. 37, pp. 940–950. https://doi.org/10.1111/j.1365-313X.2003.02010.x
Van Laere, K., Van Huylenbroeck, J., and Van Bockstaele, E., Karyotype analysis and physical mapping of 45S rRNA genes in Hydrangea species by fluorescence in situ hybridization, Plant Breed., 2008, vol. 127, pp. 301–307. https://doi.org/10.1111/j.1439-0523.2007.01456.x
Vershinin, A.V., Alkhimova, A.G., Heslop-Harrison, J.S., et al., Different patterns in molecular evolution of the Triticeae, Hereditas, 2001, vol. 135, pp. 153–160. https://doi.org/10.1111/j.1601-5223.2001.t01-1-00153.x
Volkov, R.A., Borisjuk, N.V., Panchuk, I.I., et al., Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum, Mol. Biol. Evol., 1999, vol. 16, pp. 311–320. https://doi.org/10.1093/oxfordjournals.molbev.a026112
Volkov, R.A., Komarova, N.Y., and Hemleben, V., Ribosomal DNA in plant hybrids: Inheritance, rearrangement, expression, Syst. Biodiversity, 2007, vol. 5, pp. 261–276. https://doi.org/10.1017/S1477200007002447
Volkov, R.A., Panchuk, I.I., Borisjuk, N.V., et al., Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna, BMC Plant Biol., 2017, vol. 17, p. 21. https://doi.org/10.1186/s12870-017-0978-6
Vozárová, R., Herklotz, V., Kovařík, A., et al., Ancient origin of two 5S rDNA families dominating in the genus Rosa and their behavior in the Canina-type meiosis, Front. Plant Sci., 2021, vol. 12. https://doi.org/10.3389/fpls.2021.643548
Wang, W., Zhang, X., Garcia, S., et al., Intragenomic rDNA variation – The product of concerted evolution, mutation, or something in between?, Heredity, 2023, vol. 131, pp. 179–188. https://doi.org/10.1038/s41437-023-00634-5
Wendel, J.F., The wondrous cycles of polyploidy in plants, Am. J. Bot., 2015, vol. 102, pp. 1753–1756. https://doi.org/10.3732/ajb.1500320
Xiong, Z., Gaeta, R.T., and Pires, J.C., Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 7908–7913. https://doi.org/10.1073/pnas.1014138108
Yang, S., Nam, B.-M., Jang, J., et al., A checklist of Gasan Mt.: an online platform for virtual specimens, Kor. J. Plant Taxon., 2020, vol. 50, pp. 453–474. https://doi.org/10.11110/kjpt.2020.50.4.453