РЕЗЮМЕ. Зростає усвідомлення того, що ефективна та регулярна динаміка мітохондрій покращує функцію серця і впливає на якість життя. Мелатонін – це основний гормон епіфізу, який оптимізує динаміку мітохондрій при багатьох порушеннях серцевої діяльності. З огляду на цей факт, ми вводили здоровим щурам мелатонін упродовж усієї доби, щоб дослідити зміни у динаміці мітохондрій лівого шлуночка серця і наприкінці ночі, і протягом дня. Двадцять самців лінії Вістар (віком 3–4 міс) були рандомізовано розподілені у групу контролю (C; n = 10) та групу мелатоніну (MEL; додавання 10 мг/кг мелатоніну до питної води, n = 10). На п’ятий день дослідження рандомізовано обрали по 5 щурів з груп та піддали їх евтаназії о 08:00, а інших тварин, по 5 щурів з обох груп, умертвили о 20:00 і взяли зразки тканини з лівого шлуночка (LV). Результати кількісної ПЦР у реальному часі і Вестерн-блот аналізу продемонстрували, що мелатонін відіграє превентивну роль у злитті мітохондрій та мітофагії по осі DRP1/FIS1 та BNIP3/NIX, відповідно. Крім того, введення мелатоніну значно знизило активацію P21, індукувало зупинку клітинного циклу, P27, зрештою, регулювало сигнали каспазо-залежного мітохондріального апоптозу залежно від часу. Наші результати показують, що мелатонін може бути терапевтичним засобом захисту біоенергетичної динаміки мітохондрій у серці.
Ключові слова: мелатонін, серце, апоптоз, динаміка мітохондрій, мітофагія
![Current Issue](/site/img/Cytology_Genetics_en182x254.gif)
Повний текст та додаткові матеріали
Цитована література
Acuña-Castroviejo, D., Escames, G., Venegas, C., et al., Extrapineal melatonin: sources, regulation, and potential functions, Cell. Mol. Life Sci., 2014, vol. 71, no. 16, pp. 2997–3025. https://doi.org/10.1007/s00018-014-1579-2
Benjamin, E.J., Blaha, M.J., Chiuve, S.E., et al., Heart disease and stroke statistics—2017 update: A report from the american heart association, Circulation, 2017, vol. 135, pp. 146–603. https://doi.org/10.1161/CIR.0000000000000485
Boland, M.L., Chourasia, A.H., and Macleod, K.F., Mitochondrial dysfunction in cancer, Front. Oncol., 2013, vol. 3, art. ID 292. https://doi.org/10.3389/fonc.2013.00292
Canaple, L., Rambaud, J., Dkhissi-Benyahya, O., et al., Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor α defines a novel positive feedback loop in the rodent liver circadian clock, Mol. Endocrinol., 2006, vol. 20, no. 8, pp. 1715–1727. https://doi.org/10.1210/me.2006-0052
Cao, Y., Xu, C., Ye, J., et al., Miro2 Regulates inter-mitochondrial communication in the heart and protects against TAC-induced cardiac dysfunction, Circ. Res., 2019, vol. 125, no. 8, pp. 728–743. https://doi.org/10.1161/CIRCRESAHA.119.315432
Chinnadurai, G., Vijayalingam, S., and Gibson, S.B., BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions, Oncogene, 2008, vol. 27, pp. S114–S127. https://doi.org/10.1038/onc.2009.49
Coqueret, O., New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment?, Trends Cell Biol., 2003, vol. 13, no. 2, pp. 65–70. https://doi.org/10.1016/s0962-8924(02)00043-0
Ding, M., Feng, N., Tang, D., et al., Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway, J. Pineal Res., 2018a, vol. 65, no. 2, art. ID e12491. https://doi.org/10.1111/jpi.12491
Ding, M., Ning, J., Feng, N., et al., Dynamin-related protein 1-mediated mitochondrial fission contributes to post-traumatic cardiac dysfunction in rats and the protective effect of melatonin, J. Pineal Res., 2018b, vol. 64, no. 1. https://doi.org/10.1111/jpi.12447
Doll, S., Dreßen, M., Geyer, P.E., et al., Region and cell-type resolved quantitative proteomic map of the human heart, Nat. Commun., 2017, vol. 8, no. 1, art. ID 1469. https://doi.org/10.1038/s41467-017-01747-2
Dorn, G.W., Vega, R.B., and Kelly, D.P., Mitochondrial biogenesis and dynamics in the developing and diseased heart, Genes Dev., 2015, vol. 29, no. 19, pp. 1981–1991. https://doi.org/10.1101/gad.269894.115
Eymin, B., Haugg, M., Droin, N., et al., p27Kip1 induces drug resistance by preventing apoptosis upstream of cytochrome c release and procaspase-3 activation in leukemic cells, Oncogene, 1999, vol. 18, no. 7, pp. 1411–1418. https://doi.org/10.1038/sj.onc.1202437
Gálvez, A.S., Brunskill, E.W., Marreez, Y., et al., Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress, J. Biol. Chem., 2006, vol. 281, no. 3, pp. 1442–1448. https://doi.org/10.1074/jbc.M509056200
Gustafsson, A.B., Bnip3 as a dual regulator of mitochondrial turnover and cell death in the myocardium, Pediatr. Cardiol., 2011, vol. 32, no. 3, pp. 267–274. https://doi.org/10.1007/s00246-010-9876-5
Hamacher-Brady, A. and Brady, N.R., Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy, Cell Mol. Life Sci., 2016, vol. 73, no. 4, 775–795. https://doi.org/10.1007/s00018-015-2087-8
He, G., Siddik, Z.H., Huang, Z., et al., Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities, Oncogene, 2005, vol. 24, no. 18, pp. 2929–2943. https://doi.org/10.1038/sj.onc.1208474
Ikeda, Y., Shirakabe, A., Brady, C., et al., Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system, J. Mol. Cell Cardiol., 2015, vol. 78, pp. 116–122. https://doi.org/10.1016/j.yjmcc.2014.09.019
Kim, E.M., Jung, C.H., Kim, J., et al., The p53/p21 complex regulates cancer cell invasion and apoptosis by targeting Bcl-2 family proteins, Cancer Res., 2017, vol. 77, no. 11, pp. 3092–3100. https://doi.org/10.1158/0008-5472.CAN-16-2098
Kohsaka, A., Das, P., Hashimoto, I., et al., The circadian clock maintains cardiac function by regulating mitochondrial metabolism in mice, PLoS One, 2014, vol. 9, no. 11, art. ID e112811. https://doi.org/10.1371/journal.pone.0112811
Li, J., Zheng, X., Ma, X., et al., Melatonin protects against chromium(VI)-induced cardiac injury via activating the AMPK/Nrf2 pathway, J. Inorg. Biochem., 2019, vol. 197, art. ID 110698. https://doi.org/10.1016/j.jinorgbio.2019.110698
Liu, C., Li, S., Liu, T., et al., Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism, Nature, 2007, vol. 447, no. 7143, pp. 477–481. https://doi.org/10.1038/nature05767
Lochner, A., Marais, E., and Huisamen, B., Melatonin and cardioprotection against ischaemia/reperfusion injury: What’s new? A review, J. Pineal Res., 2018, vol. 65, no. 1, art. ID e12490. https://doi.org/10.1111/jpi.12490
Marín-García, J. and Akhmedov, A.T., Mitochondrial dynamics and cell death in heart failure, Heart Failure Rev., 2016, vol. 21, no. 2, pp. 123–136. https://doi.org/10.1007/s10741-016-9530-2
Morales, P.E., Arias-Durán, C., Ávalos-Guajardo, Y., et al., Emerging role of mitophagy in cardiovascular physiology and pathology, Mol. Aspects Med., 2020, vol. 71, art. ID 100822. https://doi.org/10.1016/j.mam.2019.09.006
Moyzis, A.G., Sadoshima, J., and Gustafsson, Å.B., Mending a broken heart: the role of mitophagy in cardioprotection, Am. J. Physiol.: Heart Circ. Physiol., 2015, vol. 308, no. 3, pp. H183–192. https://doi.org/10.1152/ajpheart.00708.2014
Novak, I., Mitophagy: a complex mechanism of mitochondrial removal, Antioxid. Redox Signal., 2012, vol. 17, no. 5, pp. 794–802. https://doi.org/10.1089/ars.2011.4407
Okamoto, K. and Shaw, J.M., Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes, Annu. Rev. Genet., 2005, vol. 39, pp. 503–536. https://doi.org/10.1146/annurev.genet.38.072902.093019
Ong, S.B, Subrayan, S., Lim, S.Y., et al., Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury, Circulation, 2010, vol. 121, no. 18, pp. 2012–2022. https://doi.org/10.1161/CIRCULATIONAHA.109.906610
Ong, S.B., Kalkhoran, S.B., Cabrera-Fuentes, H.A., et al., Mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease, Eur. J. Pharmacol., 2015, vol. 763, pp. 104–114. https://doi.org/10.1016/j.ejphar.2015.04.056
Otera, H. and Mihara, K., Molecular mechanisms and physiologic functions of mitochondrial dynamics, J. Biochem., 2011, vol. 149, no. 3, pp. 241–251. https://doi.org/10.1093/jb/mvr002
Papanicolaou, K.N., Kikuchi, R., Ngoh, G.A., et al., Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart, Circ. Res., 2012, vol. 111, no. 8, pp. 1012–1026. https://doi.org/10.1161/CIRCRESAHA.112.274142
Paradies, G., Paradies, V., Ruggiero, F.M., et al., Protective role of melatonin in mitochondrial dysfunction and related disorders, Arch. Toxicol., 2015, vol. 89, no. 6, pp. 923–939. https://doi.org/10.1007/s00204-015-1475-z
Piquereau, J., Caffin, F., Novotova, M., et al., Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload, Cardiovasc. Res., 2012, vol. 94, no. 3, pp. 408–417. https://doi.org/10.1093/cvr/cvs117
Qiu, Z., Wei, Y., Song, Q., et al., The role of myocardial mitochondrial quality control in heart failure, Front. Pharmacol., 2019, vol. 10, art. ID 1404. https://doi.org/10.3389/fphar.2019.01404
Reddy, P.H., Reddy, T.P., Manczak, M., et al., Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases, Brain Res. Rev., 2011, vol. 67, nos. 1–2, pp. 103-118. https://doi.org/10.1016/j.brainresrev.2010.11.004
Scott, I. and Youle, R.J., Mitochondrial fission and fusion, Essays Biochem., 2010, vol. 47, pp. 85–98. https://doi.org/10.1042/bse0470085
Tan, D.X., Reiter, R.J., Manchester, L.C., et al., Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger, Curr. Top. Med. Chem., 2002, vol. 2, no. 2, pp. 181–197. https://doi.org/10.2174/1568026023394443
Tan, D.X. and Reiter, R.J., Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells, Melatonin Res., 2019, vol. 2, pp. 44–66. https://doi.org/10.32794/mr11250011
Twig, G., Elorza, A., Molina, A.J., et al., Fission and selective fusion govern mitochondrial segregation and elimination by autophagy, EMBO J., 2008, vol. 27, no. 2, pp. 433–446. https://doi.org/10.1038/sj.emboj.7601963
Vásquez-Trincado, C., García-Carvajal, I., Pennanen, C., et al., Mitochondrial dynamics, mitophagy and cardiovascular disease, J. Physiol., 2016, vol. 594, no. 3, pp. 509–525. https://doi.org/10.1113/JP271301
Venegas, C., García, J.A., Escames, G., et al., Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations, J. Pineal Res., 2012, vol. 52, no. 2, pp. 217–227. https://doi.org/10.1111/j.1600-079X.2011.00931.x
Wang, J., Toan, S., and Zhou, H., Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury: New insights into the mechanisms and therapeutic potentials, Pharmacol. Res., 2020, vol. 156, art. ID 104771. https://doi.org/10.1016/j.phrs.2020.104771
Willich, S.N., Goldberg, R.J., Maclure, M., et al., Increased onset of sudden cardiac death in the first three hours after awakening, Am. J. Cardiol., 1992, vol. 70, no. 1, pp. 65–68. https://doi.org/10.1016/0002-9149(92)91391-g
Woltman, A.M., van der Kooij, S.W., Coffer, P.J., et al., Rapamycin specifically interferes with GM-CSF signaling in human dendritic cells, leading to apoptosis via increased p27KIP1 expression, Blood, 2003, vol. 101, no. 4, pp. 1439–1445. https://doi.org/10.1182/blood-2002-06-1688
Youle, R.J. and van der Bliek, A.M., Mitochondrial fission, fusion, and stress, Science, 2012, vol. 337, art. ID 6098, pp. 1062–1065. https://doi.org/10.1126/science.1219855
Yussman, M.G., Toyokawa, T., Odley, A., et al., Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy, Nat. Med., 2002, vol. 8, no. 7, pp. 725–730. https://doi.org/10.1038/nm719
Zhang, D., and Ma, J., Mitochondrial dynamics in rat heart induced by 5-fluorouracil, Med. Sci. Monit., 2018, vol. 24, pp. 6666–6672. https://doi.org/10.12659/MSM.910537
Zhang, J. and Ney, P.A., Role of BNIP3 and NIX in cell death, autophagy, and mitophagy, Cell Death Differ., 2009, vol. 16, no. 7, pp. 939–946. https://doi.org/10.1038/cdd.2009.16
Zhang, Y., Liu, D., Hu, H., et al., HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury, Biomed. Pharmacother., 2019a, vol. 120, art. ID 109464. https://doi.org/10.1016/j.biopha.2019.109464
Zhang, Y., Wang, Y., Xu, J., et al., Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways, J. Pineal Res., 2019b, vol. 66, no. 2, art. ID e12542. https://doi.org/10.1111/jpi.12542
Zhou, H., Wang, S., Hu, S., et al., ER-Mitochondria microdomains in cardiac ischemia-reperfusion injury: a fresh perspective, Front. Physiol., 2018a, vol. 9, art. ID 755. https://doi.org/10.3389/fphys.2018.00755
Zhou, H., Ma, Q., Zhu, P., et al., Protective role of melatonin in cardiac ischemia-reperfusion injury: from pathogenesis to targeted therapy, J. Pineal Res., 2018b, vol. 64, no. 3. https://doi.org/10.1111/jpi.12471