РЕЗЮМЕ. Епігенетика – це наука, що вивчає модифікації експресії ДНК без зміни послідовностей ДНК. Епігенетичні механізми – це специфічні «контрольні» модифікації, які відповідають за діяльність або бездіяльність обраних генів. Дослідники виявляють великий вплив епігенетичних механізмів на різноманітні загальні захворювання людини. Це дає надію лікарям-практикам на можливість розуміння патологічних механізмів і запровадження каузальної терапії. Широкими також є можливості для практикуючих стоматологів у плані діагностики і лікування захворювань, що виникають у ротовій порожнині. У цьому огляді представлено роль епігенетичних механізмів та зростаючий інтерес до їх можливої асоціації з такими стоматологічними патологіями, як захворювання пародонту, черепно-лицьові деформації та агенез зубів.
Ключові слова: епігенетика, гени, стоматологічні патології, захворювання пародонту, агенез зубів
Повний текст та додаткові матеріали
Цитована література
Alaskhar Alhamwe, B., Khalaila, R., Wolf, J., et al., Histone modifications and their role in epigenetics of atopy and allergic diseases, Allergy, Asthma, Clin. Immunol., 2018, vol. 14, art. ID 39. https://doi.org/10.1186/s13223-018-0259-4
Alegría-Torres, J.A., Baccarelli, A., and Bollati, vol., Epigenetics and lifestyle, Epigenomics, 2011, vol. 3. pp. 267–277. https://doi.org/10.2217/epi.11.22
Al-Moghrabi, N., Al-Qasem, A.J.S., and Aboussekhra, A., Methylation-related mutations in the BRCA1 promoter in peripheral blood cells from cancer-free women, Int. J. Oncol., 2011, vol. 39, no. 1, pp. 129–135. https://doi.org/10.3892/ijo.2011.1021
Andia, D.C., de Oliveira, N.F.P., Casarin, R.C.V., et al., DNA Methylation status of the IL8 gene promoter in aggressive periodontitis, J. Periodontol., 2010, vol. 81, no. 9, pp. 1336–1341. https://doi.org/10.1902/jop.2010.100082
Audia, J.E. and Campbell, R.M., Histone modifications and cancer, Cold Spring Harbor Perspect. Biol., 2016, vol. 8, art. ID a019521. https://doi.org/10.1101/cshperspect.a019521
Banjar, W. and Alshammari, M.H., Genetic factors in pathogenesis of chronic periodontitis, J. Taibah Univ. Med. Sci., 2014, vol. 9, no. 3, pp. 245–247. https://doi.org/10.1016/j.jtumed.2014.04.003
Bannister, A.J. and Kouzarides, T., Regulation of chromatin by histone modifications, Cell Res., 2011, vol. 21, pp. 381–395. https://doi.org/10.1038/cr.2011.22
Barros, S.P. and Offenbacher, S., Epigenetics: connecting environment and genotype to phenotype and disease, J. Dent. Res., 2009, vol. 88, pp. 400–408. https://doi.org/10.1177/0022034509335868
Barros, S.P. and Offenbacher, S., Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response, Periodontology, 2014, vol. 64, pp. 95–110. https://doi.org/10.1111/prd.12000
Beaty, T.H., Ruczinski, I., Murray, J.C., et al., Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate, Genet. Epidemiol., 2011, vol. 35, no. 6, pp. 469–478. https://doi.org/10.1002/gepi.20595
Bin Mohsin, A.H. and Barshaik, S., Epigenetics in dentistry: a literature review, J. Clin. Epigenetics, 2017, vol. 3, no. 1, pp. 1–4. https://doi.org/10.21767/2472-1158.100035
Chai, Y. and Maxson, R.E., Recent advances in craniofacial morphogenesis, Dev. Dyn., 2006, vol. 235, no. 9, pp. 2353–2375. https://doi.org/10.1002/dvdy.20833
de Faria Amormino, S.A., Arão, T.C., Saraiva, A.M., et al., Hypermethylation and low transcription of TLR2 gene in chronic periodontitis, Hum. Immunol., 2013, vol. 74, no. 9, pp. 1231–1236. https://doi.org/10.1016/j.humimm.2013.04.037
De Oliveira, N.F.P., Andia, D.C., Planello, A.C., et al., TLR2 and TLR4 gene promoter methylation status during chronic periodontitis, J. Clin. Periodontol., 2011, vol. 38, no. 11, pp. 975–983. https://doi.org/10.1111/j.1600-051X.2011.01765.x
De Souza, A.P., Planello, A.C., Marques, M.R., et al., High-throughput DNA analysis shows the importance of methylation in the control of immune inflammatory gene transcription in chronic periodontitis, Clin. Epigenet., 2014, vol. 6, art. ID. https://doi.org/10.1186/1868-7083-6-15
Delpu, Y., Cordelier, P., Cho, W.C., and Torrisani, J., DNA methylation and cancer diagnosis, Int. J. Mol. Sci., 2013, vol. 14, no. 7, pp. 15029–15058. https://doi.org/10.3390/ijms140715029
Ebersole, J.L., Dawson, D.R., Morford, L.A., et al., Periodontal disease immunology: ‘double indemnity’ in protecting the host, Periodontol, 2013, vol. 62, no. 1, pp. 163–202. https://doi.org/10.1111/prd.12005
Emfietzoglou, R., Pachymanolis, E., and Piperi, C., Impact of epigenetic alterations in the development of oral diseases, Curr. Med. Chem., 2021, vol. 28, no. 6, pp. 1091–1103. https://doi.org/10.2174/0929867327666200114114802
Faam, B., Ali Ghaffari, M., Ghadiri, A., and Azizi, F., Epigenetic modifications in human thyroid cancer (Review), Biomed. Rep., 2015, vol. 3, no. 1, pp. 3–8. https://doi.org/10.3892/br.2014.375
Frazier-Bowers, S.A., Guo, D.C., Cavender, A., et al., A novel mutation in human PAX9 causes molar oligodontia, J. Dent. Res., 2002, vol. 81, no. 2, pp. 129–133.
Hajishengallis, G., Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response, Trends Immunol., 2014, vol. 35, no. 1, pp. 3–11. https://doi.org/10.1016/j.it.2013.09.001
Hart, T.C. and Kornman, K.S., Genetic factors in the pathogenesis of periodontitis, Periodontology, 1997, vol. 14, n. 1, pp. 202–215. https://doi.org/10.1111/j.1600-0757.1997.tb00198.x
Howe, L.J., Richardson, T.G., Arathimos, R., et al., Evidence for DNA methylation mediating genetic liability to non-syndromic cleft lip/palate, Epigenomics, 2019, vol. 11, no. 2, pp. 133–145. https://doi.org/10.2217/epi-2018-0091
Hua, J.T., Chen, S., and He, H.H., Landscape of noncoding RNA in prostate cancer, Trends Genet., 2019, vol. 35, no. 11, pp. 840–851. https://doi.org/10.1016/j.tig.2019.08.004
Ishikawa, I., Host responses in periodontal diseases: a preview, Periodontology, 2007, vol. 43, no. 1, pp. 9–13. https://doi.org/10.1111/j.1600-0757.2006.00188.x
Joehanes, R., Just, A.C., Marioni, R.E., et al., Epigenetic signatures of cigarette smoking, Circ.: Cardiovasc. Genet., 2016, vol. 9, no. 5, pp. 436–447. https://doi.org/10.1161/CIRCGENETICS.116.001506
Johnston, M.O., Mutations and New Variation: Overview, in Encyclopedia of Life Sciences, Chichester: John Wiley & Sons, 2006.
Jones, P.A. and Baylin, S.B., The fundamental role of epigenetic events in cancer, Nat. Rev. Genet., 2002, vol. 3, no. 6, pp. 415–428. https://doi.org/10.1038/nrg816
Kaelin, W.G. and McKnight, S.L., Influence of metabolism on epigenetics and disease, Cell, 2013, vol. 153, no. 1, pp. 56–69. https://doi.org/10.1016/j.cell.2013.03.004
Kiedrowski, M. and Mroz, A., The effects of selected drugs and dietary compounds on proliferation and apoptosis in colorectal carcinoma, Contemp. Oncol., 2014, vol. 18, no. 4, pp. 222–226. https://doi.org/10.5114/wo.2014.44296
Kurushima, Y., Tsai, P.C., Castillo-Fernandez, J., et al., Epigenetic findings in periodontitis in UK twins: a cross-sectional study, Clin. Epigenet., 2019, vol. 11, art. ID 27. https://doi.org/10.1186/s13148-019-0614-4
Li, D., Yang, Y., Li, Y., et al., Epigenetic regulation of gene expression in response to environmental exposures: From bench to model, Sci. Total Environ., 2021, vol. 776, art. ID 145998. https://doi.org/10.1016/j.scitotenv.2021.145998
Marazita, M.L., The evolution of human genetic studies of cleft lip and cleft palate, Annu. Rev. Genomics Hum. Genet., 2012, vol. 13, pp. 263–283. https://doi.org/10.1146/annurev-genom-090711-163729
Moosavi, A. and Ardekani, A.M., Role of epigenetics in biology and human diseases, Iran. Biomed. J., 2016, vol. 20, pp. 246–258. https://doi.org/10.22045/ibj.2016.01
Mueller, D.T. and Callanan, V.P., Congenital malformations of the oral cavity, Otolaryngol. Clin. North Am., 2007, vol. 40, no. 1, pp. 141–160. https://doi.org/10.1016/j.otc.2006.10.007
Muñoz-Carrillo, J.L., et al., Pathogenesis of periodontal disease, 2019, pp. 1–14.
Nibali, L., Aggressive periodontitis: microbes and host response, who to blame?, Virulence, 2015, vol. 6, no. 3, pp. 223–228. https://doi.org/10.4161/21505594.2014.986407
Ogasawara, S., Maesawa, C., Yamamoto, M., et al., Disruption of cell-type-specific methylation at the Maspin gene promoter is frequently involved in undifferentiated thyroid cancers, Oncogene, 2004, vol. 23, pp. 1117–1124. https://doi.org/10.1038/sj.onc.1207211
Papapanou, P.N., Sanz, M., Buduneli, N., et al., Periodontitis: consensus report of workgroup 2 of the 2017 World Workshop on the classification of periodontal and peri-implant diseases and conditions, J. Periodontol., 2018, vol. 89, no. S1, pp. S173–S182. https://doi.org/10.1002/JPER.17-0721
Rangasamy, S., D’Mello, S.R., and Narayanan, V., Epigenetics, autism spectrum, and neurodevelopmental disorders, Neurotherapeutics, 2013, vol. 10, pp. 742–756. https://doi.org/10.1007/s13311-013-0227-0
Richardson, B. and Yung, R., Role of DNA methylation in the regulation of cell function, J. Lab. Clin. Med., 1999, vol. 134, no. 4, pp. 333–340. https://doi.org/10.1016/S0022-2143(99)90147-6
Rinn, J.L., Chang, H.Y., Genome regulation by long noncoding RNAs, Annu. Rev. Biochem., 2012, vol. 81, pp. 145–166. https://doi.org/10.1146/annurev-biochem-051410-092902
Romano, G., Veneziano, D., Acunzo, M., and Croce, C.M., Small non-coding RNA and cancer, Carcinogenesis, 2017, vol. 38, no. 5, pp. 485–491. https://doi.org/10.1093/carcin/bgx026
Salvi, A., Giacopuzzi, E., Bardellini, E., et al., Mutation analysis by direct and whole exome sequencing in familial and sporadic tooth agenesis, Int. J. Mol. Med., 2016, vol. 38, no. 5, pp. 1338–1348. https://doi.org/10.3892/ijmm.2016.2742
Sarkar, T., Bansal, R., and Das, P., A novel G to A transition at initiation codon and exon-intron boundary of PAX9 identified in association with familial isolated oligodontia, Gene, 2017, vol. 635, pp. 69–76. https://doi.org/10.1016/j.gene.2017.08.020
Seo, J.-Y., Park, Y.-J., Yi, Y.-A., et al., Epigenetics: general characteristics and implications for oral health, Restor. Dent. Endod., 2015, vol. 40, no. 1, pp. 14–22. https://doi.org/10.5395/rde.2015.40.1.14
Sepolia, N., Jindal, D., Kaushwaha, S., et al., A revolution in dentistry: epigenetics, Dent. J. Adv. Stud., 2019, vol. 7, pp. 001–005. https://doi.org/10.1055/s-0039-1685128
Shamsi, M.B., Firoz, A.S., Imam, S.N., et al., Epigenetics of human diseases and scope in future therapeutics, J. Taibah Univ. Med. Sci., 2017, vol. 12, no. 3, pp. 205–211. https://doi.org/10.1016/j.jtumed.2017.04.003
Shayevitch, R., Askayo, D., Keydar, I., Ast, G., The importance of DNA methylation of exons on alternative splicing, RNA, 2018, vol. 24, no. 10, pp. 1351–1362. https://doi.org/10.1261/rna.064865.117
Slots, J., Periodontitis: facts, fallacies and the future, Periodontology, 2017, vol. 75, no. 1, pp. 7–23. https://doi.org/10.1111/prd.12221
Sperber, G.H., Head and neck embryology, in Current Reconstructive Surgery, Serletti, , Eds., New York: McGraw-Hill, 2017, vol. 1.
Srijyothi, L., Ponne, S., Prathama, T., et al., Roles of non-coding RNAs in transcriptional regulation, in Transcriptional Post-transcriptional Regulation, 2018. https://doi.org/10.5772/intechopen.76125
Tallón-Walton, V., Manzanares-Céspedes, M.C., Carvalho-Lobato, P., et al., Exclusion of PAX9 and MSX1 mutation in six families affected by tooth agenesis. A genetic study and literature review, Med. Oral Pathol., Oral Cir. Bucal., 2014. vol. 19, no. 3, art. ID e248-54. https://doi.org/10.4317/medoral.19173
Tian, X. and Fang, J., Current perspectives on histone demethylases, Acta Biochim. Biophys. Sin. (Shanghai), 2007, vol. 39, no. 2, pp. 81–88. https://doi.org/10.1111/j.1745-7270.2007.00272.x
Tokizane, T., Shiina, H., Igawa, M., et al., Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer, Clin. Cancer Res., 2005, vol. 11, no. 16, pp. 5793–5801. https://doi.org/10.1158/1078-0432.CCR-04-2545
Twigg, S.R.F. and Wilkie, A.O.M., New insights into craniofacial malformations, Hum. Mol. Genet., 2015, vol. 24, pp. R50–R59. https://doi.org/10.1093/hmg/ddv228
Vieira, A.R., Meira, R., Modesto, A., Murray, J.C., MSX1, PAX9, and TGFA contribute to tooth agenesis in humans, J. Dent. Res., 2004, vol. 83, no. 9, pp. 723–727. https://doi.org/10.1177/154405910408300913
Vyas, T., Gupta, P., Kumar, S., et al., Cleft of lip and palate: A review, J. Fam. Med. Prim. Care, 2017, vol. 6, art. ID 2621. https://doi.org/10.4103/jfmpc.jfmpc_472_20
Waddington, C.H., Genetic assimilation of the bithorax phenotype, Evolution, 1956, vol. 10, no. 1, pp. 1–13. https://doi.org/10.2307/2406091
Wang, J., Sun, K., Shen, Y., et al., DNA methylation is critical for tooth agenesis: implications for sporadic non-syndromic anodontia and hypodontia, Sci. Rep., 2016, vol. 6, art. ID 19162. https://doi.org/10.1038/srep19162
Williams, M.A. and Letra, A., The changing landscape in the genetic etiology of human tooth agenesis, Genes (Basel), 2018, vol. 9, no. 5, art. ID 155. https://doi.org/10.3390/genes9050255
Wilson, A.S., Power, B.E., Molloy, P.L., DNA hypomethylation and human diseases, Biochim. Biophys. Acta, Rev. Cancer, 2007. vol. 1775. pp. 138–162. https://doi.org/10.1016/j.bbcan.2006.08.007
Wu, C.-T. and Morris, J.R., Genes, genetics, and ep genetics: a correspondence, Science, 2001, vol. 293, no. 5532, pp. 1103–1105. https://doi.org/10.1126/science.293.5532.1103
Wu, H., Tao, J., and Sun, Y.E., Regulation and function of mammalian DNA methylation patterns: a genomic perspective, Briefings Funct. Genomics, 2012, vol. 11, no. 3, pp. 240–250. https://doi.org/10.1093/bfgp/els011
Yang, X., Shi, B., Li, L., et al., Death receptor 6 (DR6) is required for mouse B16 tumor angiogenesis via the NF-κB, P38 MAPK and STAT3 pathways, Oncogenesis, 2016, vol. 5, art. ID 206. https://doi.org/10.1038/oncsis.2016.16
Yi, X., Jiang, X., Li, X., Jiang, D.S., Histone lysine methylation and congenital heart disease: From bench to bedside (Review), Int. J. Mol. Med., 2017, vol. 40, no. 4, pp. 953–964. https://doi.org/10.3892/ijmm.2017.3115
Zhang, S., Barros, S.P., Moretti, A.J., et al., Epigenetic regulation of TNFA expression in periodontal disease, J. Periodontol., 2013, vol. 84, no. 11, pp. 1606–1616. https://doi.org/10.1902/jop.2013.120294
Zhang, S., Barros, S.P., Niculescu, M.D., et al., Alteration of PTGS2 promoter methylation in chronic periodontitis, J. Dent. Res., 2010, vol. 89, no. 2, pp. 133–137. https://doi.org/10.1177/0022034509356512
Zhang, Y., Lv, J., Liu, H., et al., HHMD: the human histone modification database, Nucleic Acids Res., 2009, vol. 38, pp. 149–154. https://doi.org/10.1093/nar/gkp968