ISSN 0564-3783  

Main page
Information to authors
Editorial board
Mobile version

In Ukrainian

Export citations

A brief landscape of epigenetic mechanisms in dental pathologies

Tynior W., Strzelczyk J.K.


Epigenetics is the study of modifications in DNA expression without changing the sequences in deoxyribonucleic acid. Epigenetic mechanisms are specific control modifications responsible for the activity or inactivity of selected genes. Researchers are revealing a strong impact of epigenetic mechanisms on various general diseases in human. It gives clinicians great hope to understand pathomechanisms and start causal treatment. The possibility for dental clinicians is also wide and consists of diagnosis and treatment of diseases occurring in the oral cavity. This review presents the role of epigenetic mechanisms and the growing interest in their possible associations with dental pathologies such as periodontal diseases, craniofacial malformations, and tooth agenesis.

Key words: epigenetics, genes, dental pathologies, periodontal diseases, tooth agenesis

Tsitologiya i Genetika 2022, vol. 56, no. 5, pp. 69-71

  1. Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
  2. Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze, Poland

E-mail: hceicjow.roinyt, jstrzelczyk

Tynior W., Strzelczyk J.K. A brief landscape of epigenetic mechanisms in dental pathologies, Tsitol Genet., 2022, vol. 56, no. 5, pp. 69-71.

In "Cytology and Genetics":
Wojciech Tynior & Joanna Katarzyna Strzelczyk A Brief Landscape of Epigenetic Mechanisms in Dental Pathologies, Cytol Genet., 2022, vol. 56, no. 5, pp. 475480
DOI: 10.3103/S0095452722050115


Alaskhar Alhamwe, B., Khalaila, R., Wolf, J., et al., Histone modifications and their role in epigenetics of atopy and allergic diseases, Allergy, Asthma, Clin. Immunol., 2018, vol. 14, art. ID 39.

Alegría-Torres, J.A., Baccarelli, A., and Bollati, vol., Epigenetics and lifestyle, Epigenomics, 2011, vol. 3. pp. 267277.

Al-Moghrabi, N., Al-Qasem, A.J.S., and Aboussekhra, A., Methylation-related mutations in the BRCA1 promoter in peripheral blood cells from cancer-free women, Int. J. Oncol., 2011, vol. 39, no. 1, pp. 129135.

Andia, D.C., de Oliveira, N.F.P., Casarin, R.C.V., et al., DNA Methylation status of the IL8 gene promoter in aggressive periodontitis, J. Periodontol., 2010, vol. 81, no. 9, pp. 13361341.

Audia, J.E. and Campbell, R.M., Histone modifications and cancer, Cold Spring Harbor Perspect. Biol., 2016, vol. 8, art. ID a019521.

Banjar, W. and Alshammari, M.H., Genetic factors in pathogenesis of chronic periodontitis, J. Taibah Univ. Med. Sci., 2014, vol. 9, no. 3, pp. 245247.

Bannister, A.J. and Kouzarides, T., Regulation of chromatin by histone modifications, Cell Res., 2011, vol. 21, pp. 381395.

Barros, S.P. and Offenbacher, S., Epigenetics: connecting environment and genotype to phenotype and disease, J. Dent. Res., 2009, vol. 88, pp. 400408.

Barros, S.P. and Offenbacher, S., Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response, Periodontology, 2014, vol. 64, pp. 95110.

Beaty, T.H., Ruczinski, I., Murray, J.C., et al., Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate, Genet. Epidemiol., 2011, vol. 35, no. 6, pp. 469478.

Bin Mohsin, A.H. and Barshaik, S., Epigenetics in dentistry: a literature review, J. Clin. Epigenetics, 2017, vol. 3, no. 1, pp. 14.

Chai, Y. and Maxson, R.E., Recent advances in craniofacial morphogenesis, Dev. Dyn., 2006, vol. 235, no. 9, pp. 23532375.

de Faria Amormino, S.A., Arão, T.C., Saraiva, A.M., et al., Hypermethylation and low transcription of TLR2 gene in chronic periodontitis, Hum. Immunol., 2013, vol. 74, no. 9, pp. 12311236.

De Oliveira, N.F.P., Andia, D.C., Planello, A.C., et al., TLR2 and TLR4 gene promoter methylation status during chronic periodontitis, J. Clin. Periodontol., 2011, vol. 38, no. 11, pp. 975983.

De Souza, A.P., Planello, A.C., Marques, M.R., et al., High-throughput DNA analysis shows the importance of methylation in the control of immune inflammatory gene transcription in chronic periodontitis, Clin. Epigenet., 2014, vol. 6, art. ID.

Delpu, Y., Cordelier, P., Cho, W.C., and Torrisani, J., DNA methylation and cancer diagnosis, Int. J. Mol. Sci., 2013, vol. 14, no. 7, pp. 1502915058.

Ebersole, J.L., Dawson, D.R., Morford, L.A., et al., Periodontal disease immunology: double indemnity in protecting the host, Periodontol, 2013, vol. 62, no. 1, pp. 163202.

Emfietzoglou, R., Pachymanolis, E., and Piperi, C., Impact of epigenetic alterations in the development of oral diseases, Curr. Med. Chem., 2021, vol. 28, no. 6, pp. 10911103.

Faam, B., Ali Ghaffari, M., Ghadiri, A., and Azizi, F., Epigenetic modifications in human thyroid cancer (Review), Biomed. Rep., 2015, vol. 3, no. 1, pp. 38.

Frazier-Bowers, S.A., Guo, D.C., Cavender, A., et al., A novel mutation in human PAX9 causes molar oligodontia, J. Dent. Res., 2002, vol. 81, no. 2, pp. 129133.

Hajishengallis, G., Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response, Trends Immunol., 2014, vol. 35, no. 1, pp. 311.

Hart, T.C. and Kornman, K.S., Genetic factors in the pathogenesis of periodontitis, Periodontology, 1997, vol. 14, n. 1, pp. 202215.

Howe, L.J., Richardson, T.G., Arathimos, R., et al., Evidence for DNA methylation mediating genetic liability to non-syndromic cleft lip/palate, Epigenomics, 2019, vol. 11, no. 2, pp. 133145.

Hua, J.T., Chen, S., and He, H.H., Landscape of noncoding RNA in prostate cancer, Trends Genet., 2019, vol. 35, no. 11, pp. 840851.

Ishikawa, I., Host responses in periodontal diseases: a preview, Periodontology, 2007, vol. 43, no. 1, pp. 913.

Joehanes, R., Just, A.C., Marioni, R.E., et al., Epigenetic signatures of cigarette smoking, Circ.: Cardiovasc. Genet., 2016, vol. 9, no. 5, pp. 436447.

Johnston, M.O., Mutations and New Variation: Overview, in Encyclopedia of Life Sciences, Chichester: John Wiley & Sons, 2006.

Jones, P.A. and Baylin, S.B., The fundamental role of epigenetic events in cancer, Nat. Rev. Genet., 2002, vol. 3, no. 6, pp. 415428.

Kaelin, W.G. and McKnight, S.L., Influence of metabolism on epigenetics and disease, Cell, 2013, vol. 153, no. 1, pp. 5669.

Kiedrowski, M. and Mroz, A., The effects of selected drugs and dietary compounds on proliferation and apoptosis in colorectal carcinoma, Contemp. Oncol., 2014, vol. 18, no. 4, pp. 222226.

Kurushima, Y., Tsai, P.C., Castillo-Fernandez, J., et al., Epigenetic findings in periodontitis in UK twins: a cross-sectional study, Clin. Epigenet., 2019, vol. 11, art. ID 27.

Li, D., Yang, Y., Li, Y., et al., Epigenetic regulation of gene expression in response to environmental exposures: From bench to model, Sci. Total Environ., 2021, vol. 776, art. ID 145998.

Marazita, M.L., The evolution of human genetic studies of cleft lip and cleft palate, Annu. Rev. Genomics Hum. Genet., 2012, vol. 13, pp. 263283.

Moosavi, A. and Ardekani, A.M., Role of epigenetics in biology and human diseases, Iran. Biomed. J., 2016, vol. 20, pp. 246258.

Mueller, D.T. and Callanan, V.P., Congenital malformations of the oral cavity, Otolaryngol. Clin. North Am., 2007, vol. 40, no. 1, pp. 141160.

Muñoz-Carrillo, J.L., et al., Pathogenesis of periodontal disease, 2019, pp. 114.

Nibali, L., Aggressive periodontitis: microbes and host response, who to blame?, Virulence, 2015, vol. 6, no. 3, pp. 223228.

Ogasawara, S., Maesawa, C., Yamamoto, M., et al., Disruption of cell-type-specific methylation at the Maspin gene promoter is frequently involved in undifferentiated thyroid cancers, Oncogene, 2004, vol. 23, pp. 11171124.

Papapanou, P.N., Sanz, M., Buduneli, N., et al., Periodontitis: consensus report of workgroup 2 of the 2017 World Workshop on the classification of periodontal and peri-implant diseases and conditions, J. Periodontol., 2018, vol. 89, no. S1, pp. S173S182.

Rangasamy, S., DMello, S.R., and Narayanan, V., Epigenetics, autism spectrum, and neurodevelopmental disorders, Neurotherapeutics, 2013, vol. 10, pp. 742756.

Richardson, B. and Yung, R., Role of DNA methylation in the regulation of cell function, J. Lab. Clin. Med., 1999, vol. 134, no. 4, pp. 333340.

Rinn, J.L., Chang, H.Y., Genome regulation by long noncoding RNAs, Annu. Rev. Biochem., 2012, vol. 81, pp. 145166.

Romano, G., Veneziano, D., Acunzo, M., and Croce, C.M., Small non-coding RNA and cancer, Carcinogenesis, 2017, vol. 38, no. 5, pp. 485491.

Salvi, A., Giacopuzzi, E., Bardellini, E., et al., Mutation analysis by direct and whole exome sequencing in familial and sporadic tooth agenesis, Int. J. Mol. Med., 2016, vol. 38, no. 5, pp. 13381348.

Sarkar, T., Bansal, R., and Das, P., A novel G to A transition at initiation codon and exon-intron boundary of PAX9 identified in association with familial isolated oligodontia, Gene, 2017, vol. 635, pp. 6976.

Seo, J.-Y., Park, Y.-J., Yi, Y.-A., et al., Epigenetics: general characteristics and implications for oral health, Restor. Dent. Endod., 2015, vol. 40, no. 1, pp. 1422.

Sepolia, N., Jindal, D., Kaushwaha, S., et al., A revolution in dentistry: epigenetics, Dent. J. Adv. Stud., 2019, vol. 7, pp. 001005.

Shamsi, M.B., Firoz, A.S., Imam, S.N., et al., Epigenetics of human diseases and scope in future therapeutics, J. Taibah Univ. Med. Sci., 2017, vol. 12, no. 3, pp. 205211.

Shayevitch, R., Askayo, D., Keydar, I., Ast, G., The importance of DNA methylation of exons on alternative splicing, RNA, 2018, vol. 24, no. 10, pp. 13511362.

Slots, J., Periodontitis: facts, fallacies and the future, Periodontology, 2017, vol. 75, no. 1, pp. 723.

Sperber, G.H., Head and neck embryology, in Current Reconstructive Surgery, Serletti, , Eds., New York: McGraw-Hill, 2017, vol. 1.

Srijyothi, L., Ponne, S., Prathama, T., et al., Roles of non-coding RNAs in transcriptional regulation, in Transcriptional Post-transcriptional Regulation, 2018.

Tallón-Walton, V., Manzanares-Céspedes, M.C., Carvalho-Lobato, P., et al., Exclusion of PAX9 and MSX1 mutation in six families affected by tooth agenesis. A genetic study and literature review, Med. Oral Pathol., Oral Cir. Bucal., 2014. vol. 19, no. 3, art. ID e248-54.

Tian, X. and Fang, J., Current perspectives on histone demethylases, Acta Biochim. Biophys. Sin. (Shanghai), 2007, vol. 39, no. 2, pp. 8188.

Tokizane, T., Shiina, H., Igawa, M., et al., Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer, Clin. Cancer Res., 2005, vol. 11, no. 16, pp. 57935801.

Twigg, S.R.F. and Wilkie, A.O.M., New insights into craniofacial malformations, Hum. Mol. Genet., 2015, vol. 24, pp. R50R59.

Vieira, A.R., Meira, R., Modesto, A., Murray, J.C., MSX1, PAX9, and TGFA contribute to tooth agenesis in humans, J. Dent. Res., 2004, vol. 83, no. 9, pp. 723727.

Vyas, T., Gupta, P., Kumar, S., et al., Cleft of lip and palate: A review, J. Fam. Med. Prim. Care, 2017, vol. 6, art. ID 2621.

Waddington, C.H., Genetic assimilation of the bithorax phenotype, Evolution, 1956, vol. 10, no. 1, pp. 113.

Wang, J., Sun, K., Shen, Y., et al., DNA methylation is critical for tooth agenesis: implications for sporadic non-syndromic anodontia and hypodontia, Sci. Rep., 2016, vol. 6, art. ID 19162.

Williams, M.A. and Letra, A., The changing landscape in the genetic etiology of human tooth agenesis, Genes (Basel), 2018, vol. 9, no. 5, art. ID 155.

Wilson, A.S., Power, B.E., Molloy, P.L., DNA hypomethylation and human diseases, Biochim. Biophys. Acta, Rev. Cancer, 2007. vol. 1775. pp. 138162.

Wu, C.-T. and Morris, J.R., Genes, genetics, and ep genetics: a correspondence, Science, 2001, vol. 293, no. 5532, pp. 11031105.

Wu, H., Tao, J., and Sun, Y.E., Regulation and function of mammalian DNA methylation patterns: a genomic perspective, Briefings Funct. Genomics, 2012, vol. 11, no. 3, pp. 240250.

Yang, X., Shi, B., Li, L., et al., Death receptor 6 (DR6) is required for mouse B16 tumor angiogenesis via the NF-κB, P38 MAPK and STAT3 pathways, Oncogenesis, 2016, vol. 5, art. ID 206.

Yi, X., Jiang, X., Li, X., Jiang, D.S., Histone lysine methylation and congenital heart disease: From bench to bedside (Review), Int. J. Mol. Med., 2017, vol. 40, no. 4, pp. 953964.

Zhang, S., Barros, S.P., Moretti, A.J., et al., Epigenetic regulation of TNFA expression in periodontal disease, J. Periodontol., 2013, vol. 84, no. 11, pp. 16061616.

Zhang, S., Barros, S.P., Niculescu, M.D., et al., Alteration of PTGS2 promoter methylation in chronic periodontitis, J. Dent. Res., 2010, vol. 89, no. 2, pp. 133137.

Zhang, Y., Lv, J., Liu, H., et al., HHMD: the human histone modification database, Nucleic Acids Res., 2009, vol. 38, pp. 149154.

Copyright© ICBGE 2002-2023 Coded & Designed by Volodymyr Duplij Modified 01.12.23