Поліаміни (ПА) – аліфатичні аміни, виявлені в усіх клітинах, у тому числі рослинних. Найпоширенішими ПА вищих рослин є путресцин, спермідин і спермін. ПА локалізуються в клітинних стінках, вакуолях, мітохондріях, хлоропластах і ядрі. За несприятливих умов вміст ПА у рослинних тканинах істотно зростає. Ці сполуки вважають типовими стресовими метаболітами. Вони беруть участь у стабілізації біомакромолекул і мембранних структур. Водночас останніми роками функції ПА за стресових умов розглядають в контексті їх залучення в процеси клітинного сигналінгу. В огляді наведено сучасні відомості про синтез і катаболізм ПА. Розглядаються процеси утворення з ПА пероксиду водню, що виконує роль однієї з ключових сигнальних молекул. Обговорюється ймовірний синтез оксиду азоту за окиснювальної деградації ПА. Наводяться відомості про вплив ПА на кальцієвий гомеостаз рослинних клітин, участь ПА в регуляції іонних, у тому числі кальцієвих, каналів. Як один із посередників у реалізації ефектів ПА розглядається газотрансмітер сірководень. У роботі узагальнено відомості про роль ПА у підтриманні окиснювально-відновного балансу у рослинних клітинах, їх участь в регуляції експресії генів стресових білків, стану продихового апарату та інших процесів, пов’язаних з адаптацією до несприятливих чинників середовища.
Ключові слова: поліаміни, сигнальні посредники, активні форми кисню, оксид азоту, кальцій, антиоксидантна система, продихи, стресори, стійкість
Повний текст та додаткові матеріали
Цитована література
Abbasi, N.A., Ali, I., Hafiz, I.A., and Khan, A.S., Application of polyamines in horticulture: A review, Int. J. Biosci., 2017, vol. 10, no. 5, pp. 319–342. https://doi.org/10.12692/ijb/10.5.319-342
Acharya, B.R. and Assmann, S.M., Hormone interactions in stomatal function, Plant Mol. Biol., 2009, vol. 69, no. 4, pp. 451–462. https://doi.org/10.1007/s11103-008-9427-0
Agurla, S., Gayatri, G., and Raghavendra, A.S., Polyamines increase nitric oxide and reactive oxygen species in guard cells of Arabidopsis thaliana during stomatal closure, Protoplasma, 2018, vol. 255, no. 1, pp. 153–162. https://doi.org/10.1007/s00709-017-1139-3
Alcázar, R., Bueno, M., and Tiburcio, A.F., Polyamines: Small amines with large effects on plant abiotic stress tolerance, Cells, 2020, vol. 9, no. 11, art. ID 2373. https://doi.org/10.3390/cells9112373
An, Z., Jing, W., Liu, Y., and Zhang, W., Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba, J. Exp. Bot., 2008, vol. 59, no. 4, pp. 815–825. https://doi.org/10.1093/jxb/erm370
An, Z.F., Li, C.Y., Zhang, L.X., and Alva, A.K., Role of polyamines and phospholipase D in maize (Zea mays L.) response to drought stress, S. Afr. J. Bot., 2012, vol. 83, pp. 145–150. https://doi.org/10.1016/j.sajb.2012.08.009
Andronis, E.A., Moschou, P.N., Toumi, I., and Roubelakis-Angelakis, K.A., Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana, Front. Plant Sci., 2014, vol. 5, pp. 132. https://doi.org/10.3389/fpls.2014.00132
Angelini, R., Cona, A., Federico, R., Fincato, P., Tavladoraki, P., and Tisi, A., Plant amine oxidases “on the move”: An update, Plant Physiol. Biochem., 2010, vol. 48, no. 7, pp. 560–564. https://doi.org/10.1016/j.plaphy.2010.02.001
Aronova, E.E., Shevyakova, N.I., Stetsenko, L.A., and Kuznetsov, Vl.V., Cadaverine-induced induction of superoxide dismutase gene expression in Mesembryanthemum crystallinum L., Dokl. Biol. Sci., 2005, vol. 403, nos. 1–6, pp. 257–259.
Asgher, M., Per, T.S., Anjum, S., Khan, M.I.R., Masood, A., Verma, S., and Khan, N.A., Contribution of glutathione in heavy metal stress tolerance in plants, in Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress, Khan, M.I.R. and Khan, N.A., Eds., Singapore: Springer-Verlag, 2017, pp. 297–313. https://doi.org/10.1007/978-981-10-5254-5_12
Book
Bienert, G.P., Moller, A.L., Kristiansen, K.A., Schulz, A., Møller, I.M., Schjoerring, J.K., and Jahn, T.P., Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes, J. Biol. Chem., 2007, vol. 282, no. 2, pp. 1183– 1192. https://doi.org/10.1074/jbc.M603761200
Brosché, M., Merilo, E., Mayer, F., Pechter, P., Puzõrjova, I., Brader, G., Kangasjärvi, J., and Kollist, H., Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance, Plant Cell Environ., 2010, vol. 33, no. 6, pp. 914–925. https://doi.org/10.1111/j.1365-3040.2010.02116.x
Cai, Q., Zhang, J., Guo, C., and Al, E., Reviews of the physiological roles and molecular biology of polyamines in higher plants, J. Fujian Educ. Coll., 2006, vol. 7, pp. 118–124. https://doi.org/10.3969/j.issn.1673-9884.2006.10.039
Chen, X., Chen, Q., Zhang, X., Li, R., Jia, Y., Ef, A.A., Jia, A., Hu, L., and Hu, X., Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions, Plant Physiol. Biochem., 2016, vol. 104, pp. 174–179. https://doi.org/10.1016/j.plaphy.2016.02.033
Chen, D., Shao, Q., Yin, L., Younis, A., and Zheng, B., Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses, Front. Plant Sci., 2019, vol. 9, art. ID 1945. https://doi.org/10.3389/fpls.2018.01945
Corpas, F.J. and Barroso, J.B., Nitric oxide synthase-like activity in higher plants, Nitric Oxide, 2017, vol. 68, pp. 5–6. https://doi.org/10.1016/j.niox.2016.10.009
Courtois, C., Besson, A., Dehan, J., Bourque, S., Dobrowolska, G., Pugin, A., and Wendehenne, D., Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases, J. Exp. Bot., 2008, vol. 59, no. 2, pp. 155–163. https://doi.org/10.1093/jxb/erm197
De Oliveira, L.F., Navarro, B.V., Cerruti, G., et al., Polyamines and amino acid related metabolism: the roles of arginine and ornithine are associated with the embryogenic potential, Plant Cell Physiol., 2018, vol. 59, pp. 1084–1098. https://doi.org/10.1093/pcp/pcy049
Diao, Q., Song, Y., Shi, D., and Qi, H., Interaction of polyamines, abscisic acid, nitric oxide, and hydrogen peroxide under chilling stress in tomato (Lycopersicon esculentum Mill.) seedlings, Front. Plant Sci., 2017, vol. 8, art. ID 203. https://doi.org/10.3389/fpls.2017.00203
Dubovskaya, L.V., Kolesneva, E.V., Knyazev, D.M., and Volotovskii, I.D., Protective role of nitric oxide during hydrogen peroxide-induced oxidative stress in tobacco plants, Russ. J. Plant Physiol., 2007, vol. 54, no. 6, pp. 755–761. https://doi.org/10.1134/S1021443707060064
Ebeed, H.T., Hassan, N.M., and Aljarani, A.M., Exogenous applications of Polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes, Plant Physiol. Biochem., 2017, vol. 118, pp. 438–448. https://doi.org/10.1016/j.plaphy.2017.07.014
Echevarría-Machado, I., Muñoz-Sánchez, A., Loyola-Vargas, V.M., and Hernández-Sotomayor, S.M.T., Spermine stimulation of phospholipase C from Catharanthus roseus transformed roots, J. Plant Physiol., 2002, vol. 159, no. 11, pp. 1179–1188. https://doi.org/10.1078/0176-1617-00893
Farnese, F.S., Menezes-Silva, P.E., Gusman, G.S., and Oliveira, J.A., When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress, Front. Plant Sci., 2016, vol. 7, art. ID 471. https://doi.org/10.3389/fpls.2016.00471
Fraudentali, I., Rodrigues-Pousada, R.A., Angelini, R., Ghuge, S.A., and Cona, A., Plant copper amine oxidases: Key players in hormone signaling leading to stress-induced phenotypic plasticity, Int. J. Mol. Sci., 2021, vol. 22, no. 10, art. ID 5136. https://doi.org/10.3390/ijms22105136
Gautam, V., Kaur, R., Kohli, S.K., Verma, V., Kaur, P., Singh, R., Saini, P., Arora, S., Thukral, A.K., Karpets, Yu.V., Kolupaev, Yu.E., and Bhardwaj, R., ROS compartmentalization in plant cells under abiotic stress condition, in Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress, Khan, M.I.R. and Khan, N.A., Eds., Singapore: Springer-Verlag, 2017, pp. 89–114. https://doi.org/10.1007/978-981-10-5254-5_4
Book
Ghosh, N., Das, S.P., Mandal, C., Gupta, S., Das, K., Dey, N., and Adak, M.K., Variations of antioxidative responses in two rice cultivars with polyamine treatment under salinity stress, Physiol. Mol. Biol. Plants, 2012, vol. 18, no. 4, pp. 301–313. https://doi.org/10.1007/s12298-012-0124-8
Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, no. 12, pp. 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
Groß, F., Rudolf, E.-E., Thiele, B., Durner, J., and Astier, J., Copper amine oxidase 8 regulates arginine-dependent nitric oxide production in Arabidopsis thaliana, J. Exp. Bot., 2017, vol. 68, no. 9, pp. 2149–2162. https://doi.org/10.1093/jxb/erx105
Guo, H., Xiao, T., Zhou, H., Xie, Y., and Shen, W., Hydrogen sulfide: a versatile regulator of environmental stress in plants, Acta Physiol. Plant., 2016, vol. 38, no. 1, art. ID 16. https://doi.org/10.1007/s11738-015-2038-x
Gupta, K.J. and Kaiser, W.M., Production and scavenging of nitric oxide by barley root mitochondria, Plant Cell Physiol., 2010, vol. 51, no. 4, pp. 576–584. https://doi.org/10.1093/pcp/pcq022
Gupta, K., Dey, A., and Gupta, B., Plant polyamines in abiotic stress responses, Acta Physiol. Plant., 2013, vol. 35, pp. 2015–2036. https://doi.org/10.1007/s11738-013-1239-4
Gupta, K.J., Hancock, J.T., Petrivalsky, M., Kolbert, Z., Lindermayr, C., Durner, J., Barroso, J.B., Palma, J.M., Brouquisse, R., and Wendehenne, D., Recommendations on terminology and experimental best practice associated with plant nitric oxide research, New Phytol., 2020, vol. 225, no. 5, pp. 1828–2834. https://doi.org/10.1111/nph.16157
Hancock, J.T., Hydrogen sulfide and environmental stresses, Environ. Exp. Bot., 2019, vol. 161, pp. 50–56. https://doi.org/10.1016/j.envexpbot.2018.08.034
Hao, Y., Huang, B., Jia, D., Mann, T., Jiang, X., Qiu, Y., Niitsu, M., Berberich, T., Kusano, T., and Liu, T., Identification of seven polyamine oxidase genes in tomato (Solanum lycopersicum L.) and their expression profiles under physiological and various stress conditions, J. Plant Physiol., 2018, vol. 228, pp. 1–11. https://doi.org/10.1016/j.jplph.2018.05.004
He, H. and He, L., The role of carbon monoxide signaling in the responses of plants to abiotic stresses, Nitric Oxide, 2014, vol. 42, pp. 40–43. https://doi.org/10.1016/j.niox.2014.08.011
Jing, J., Guo, S., Li, Y., and Li, W., The alleviating effect of exogenous polyamines on heat stress susceptibility of different heat resistant wheat (Triticum aestivum L.) varieties, Sci. Rep., 2020, vol. 10, art. ID 7467. https://doi.org/10.1038/s41598-020-64468-5
Kaur-Sawhney, R., Tiburcio, A.F., Altabella, T., and Galston, A.W., Polyamines in plants: An overview, J. Cell Mol. Biol., 2003, vol. 2, pp. 1–12.
Khan, A.S., Singh, Z., Abbasi, N.A., and Swinny, E.E., Pre- or post-harvest application of putrescine and low temperature storage affect fruit ripening and quality of ‘Angelino’ plum, J. Sci. Food Agric., 2008, vol. 88, pp. 1686–1695. https://doi.org/10.1002/jsfa.3265
Kohli, S.K., Handa, N., Gautam, V., Bali, S., Sharma, A., Khanna, K., Arora, S., Thukral, K.A., Ohri, P., Karpets, Yu.V., Kolupaev, Yu.E., and Bhardwaj, R., ROS signaling in plants under heavy metal stress, in Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress, Khan, M.I.R. and Khan, N.A., Eds., Singapore: Springer-Verlag, pp. 185–214. https://doi.org/10.1007/978-981-10-5254-5_8
Kokorev, A.I., Kolupaev, Yu.E., Shkliarevskyi, M.A., and Lugovaya, A.A., The effect of cadaverine on redox homeostasis of wheat seedling roots and their resistance to damage heating, Vestn. Tomsk. Gos. Univ., Biol., 2021, vol. 54, pp.116–137. https://doi.org/10.17223/19988591/54/6
Kokorev, A.I., Kolupaev, Yu.E., Yastreb, T.O., Horielova, E.I., and Dmitriev, A.P., Realization of polyamines’ effect on the state of pea stomata with the involvement of calcium and components of lipid signaling, Cytol. Genet., 2021, vol. 55, no. 2, pp. 117–124. https://doi.org/10.3103/S0095452721020079
Kokorev, A.I., Shkliarevskyi, M.A., Shvydenko, N.V., and Kolupaev, Yu.E., Possible role of hydrogen sulfide in induction of activity of antioxidative enzymes and heat resistance of wheat seedlings by putrescine, Visn. Hark. nac. agrar. univ., 2020, vol. 1, no. 49, pp. 44–53. https://doi.org/10.35550/vbio2020.01.044
Kolbert, Z., Barroso, J.B., Brouquisse, R., Corpas, F.J., Gupta, K.J., Lindermayr, C., Loake, G.J., Palma, J.M., Petřivalský, M., Wendehenne, D., and Hancock, J.T., A forty year journey: The generation and roles of NO in plants, 2019, Nitric Oxide, vol. 93, pp. 53–70. https://doi.org/10.1016/j.niox.2019.09.006
Kolupaev, Yu.E., Karpets, Yu.V., Beschasniy, S.P., abd Dmitriev, A.P., Gasotransmitters and their role in adaptive reactions of plant cells, Cytol. Genet., 2019, vol. 53, no. 5, pp. 392–406. https://doi.org/10.3103/S0095452719050098
Kolupaev, Yu.E., Karpets, Yu.V., and Kabashnikova, L.F., Antioxidative system of plants: cellular compartmentalization, protective and signaling functions, mechanisms of regulation (review), Appl. Biochem. Microbiol., 2019, vol. 55, no. 5, pp. 441–459. https://doi.org/10.1134/S0003683819050089
Kolupaev, Yu.E., Kokorev, A.I., Yastreb, T.O., and Horielova, E.I., Hydrogen peroxide as a signal mediator at inducing heat resistance in wheat seedlings by putrescine, Ukr. Biochem. J., 2019, vol. 91, no. 6, pp. 103–111.https://doi.org/10.15407/ubj91.06.103
Kolupaev, Yu.E., Kokorev, A.I., and Shkliarevskyi, M.A., Calcium-dependent changes in the activity of antioxidant enzymes and heat resistance of wheat seedlings under the influence of exogenous putrescine, Vestn. Tomsk. Gos. Univ., Biol., 2020, vol. 51, pp. 105–122. https://doi.org/10.17223/19988591/51/6
Kolupaev, Yu.E., Kokorev, A.I., Shkliarevskyi, M.A., Lugovaya, A.A., Karpets, Yu.V., and Ivanchenko, O.E., Role of NO synthesis modification in the protective effect of putrescine in wheat seedlings subjected to heat stress, Appl. Biochem. Microbiol., 2021, vol. 57, no. 3, pp. 384–391. https://doi.org/10.1134/S0003683821030066
Kozeko, L.Ye. and Kordyum, E.L., Using of heat shock proteins HSP70 for evaluation of plant state in natural phytocenoses: approaches and problems, Visn. Hark. nac. agrar. univ., 2021, vol. 2, no. 53, pp. 23–40. https://doi.org/10.35550/vbio2021.02.023
Krasylenko, Y.A., Yemets, A.I., and Blume, Y.B., Functional role of nitric oxide in plants, Russ. J. Plant Physiol., 2010, vol. 57, pp. 451–461. https://doi.org/10.1134/S1021443710040011
Kumar, N. and Mallick, S., Ameliorative mechanisms of polyamines against abiotic stress in the rice plants, in Advances in Rice Research for Abiotic Stress Tolerance, Hasanuzzaman, M., Fujita, M., Nahar, K., and Biswas, J., Eds., Elsevier, 2019. https://doi.org/10.1016/B978-0-12-814332-2.00035-6
Book
Kuznetsov, Vl.V., Radyukina, N.L., and Shevyakova, N.I., Polyamines and stress: Biological role, metabolism, and regulation, Russ. J. Plant Physiol., 2006, vol. 53, no. 5, pp. 583–604. https://doi.org/10.1134/S1021443706050025
Kuznetsov, Vl.V. and Shevyakova, N.I., Polyamines and plant adaptation to saline environment, in Desert Plants, Biology and Biotechnology, Ramawat, K.B., Ed., Berlin: Springer-Verlag, 2011, pp. 261–297. https://doi.org/10.1007/978-3-642-02550-1_13
Book
Kwak, J.M., Nguyen, V., and Schroeder, J.I., The role of reactive oxygen species in hormonal responses, Plant Physiol., 2006, vol. 141, no. 2, pp. 323–329. https://doi.org/10.1104/pp.106.079004
Larher, F., Aziz, A., Deleu, C., Lemesle, P., Ghaffar, A., Bouchard, F., and Plasman, M., Suppression of the osmoinduced proline response of rapeseed leaf discs by polyamines, Physiol. Plant., 1998, vol. 102, no. 1, pp. 139–147. https://doi.org/10.1034/j.1399-3054.1998.1020118.x
Li, Z.G., Hydrogen sulfide: a multifunctional gaseous molecule in plants, Russ. J. Plant Physiol., 2013, vol. 60, no. 6, pp. 733–740. https://doi.org/10.1134/S1021443713060058
Li, Z.G., Analysis of some enzymes activities of hydrogen sulfide metabolism in plants, Methods Enzymol., 2015, vol. 555, pp. 253–269. https://doi.org/10.1016/bs.mie.2014.11.035
Li, Z.G., Xie, L.R., and Li, X.J., Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings, J. Plant Physiol., 2015, vol. 177, pp. 121–127. https://doi.org/10.1016/j.jplph.2014.12.018
Li, Z., Zhou, H., Peng, Y., Zhang, X., Ma, X., Huang, L., and Yan, Y., Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones, Plant Growth Regul., 2015, vol. 76, pp. 71–82. https://doi.org/10.1007/s10725-014-9978-9
Li, Z., Cheng, B., Peng, Y., and Zhang, Y., Adaptability to abiotic stress regulated by γ-aminobutyric acid in relation to alterations of endogenous polyamines and organic metabolites in creeping bentgrass, Plant Physiol. Biochem., 2020, vol. 157, pp. 185–194. https://doi.org/10.1016/j.plaphy.2020.10.025
Li, Q., Wang, Z., Zhao, Y., Zhang, X., Zhang, S., Bo, L., Wang, Y., Ding, Y., and An, L., Putrescine protects hulless barley from damage due to UV-B stress via H2S and H2O2-mediated signaling pathways, Plant Cell Rep., 2016, vol. 35, no. 5, pp. 1155–1168. https://doi.org/10.1007/s00299-016-1952-8
Li, Q. and Lancaster, J.R., Chemical foundations of hydrogen sulfide biology, Nitric Oxide, 2013, vol. 35, pp. 21–34. https://doi.org/10.1016/j.niox.2013.07.001
Liang, X., Zhang, L., Natarajan, S.K., and Becker, D.F., Proline mechanisms of stress survival, Antioxid. Redox Signaling., 2013, vol. 19, pp. 998–1011. https://doi.org/10.1089/ars.2012.5074
Liu, K., Fu, H., Bei, Q., and Luan, S., Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements, Plant Physiol., 2000, vol. 124, no. 3, pp. 1315–1326. https://doi.org/10.1104/pp.124.3.1315
Liu, J., Hou, Z.H., Liu, G.H., Hou, L.X., and Liu, X., Hydrogen sulfide may function downstream of nitric oxide in ethylene-induced stomatal closure in Vicia faba L., J. Integr. Agric., 2012, vol. 11, no. 10, pp. 1644–1653. https://doi.org/10.1016/S2095-3119(12)60167-1
Liu, Q, Nishibori, N., Imai, I., and Hollibaugh, J.T., Response of polyamine pools in marine phytoplankton to nutrient limitation and variation in temperature and salinity, Mar. Ecol.: Prog. Ser., 2016, vol. 544, pp. 93–105. https://doi.org/10.3354/meps11583
Liu, W., Tan, M., Zhang, C., et al., Functional characterization of murB-potABCD operon for polyamine uptake and peptidoglycan synthesis in Streptococcus suis, Microbiol. Res., 2017, vol. 207, pp. 177–187. https://doi.org/10.1016/j.micres.2017.11.008
Luo, L., Li, Z., Tang, M.Y., Cheng, B.Z., Zeng, W.H., Peng, Y., Nie, G., and Zhang, X.Q., Metabolic regulation of polyamines and γ-aminobutyric acid in relation to spermidine-induced heat tolerance in white clover, Plant Biol., 2020, vol. 22, no. 5, pp. 794–804. https://doi.org/10.1111/plb.13139
Mayer, M.P. and Bukau, B., Hsp70 chaperones: cellular functions and molecular mechanism, Cell Mol. Life Sci., 2005, vol. 62, pp. 670–684. https://doi.org/10.1007/s00018-004-4464-6
Medvedev, S.S., Principles of calcium signal generation and transduction in plant cells, Russ. J. Plant Physiol., 2018, vol. 65, no. 6, pp. 771–783. https://doi.org/10.1134/S1021443718060109
Mellidou, I., Karamanoli, K., Constantinidou, H.I.A., and Roubelakis-Angelakis, K.A., Antisense-mediated S‑adenosyl-L-methionine decarboxylase silencing affects heat stress responses of tobacco plants, Funct. Plant Biol., 2020, vol. 47, no. 7, pp. 651–658. https://doi.org/10.1071/FP19350
Miller, E.W., Dickinson, B.C., and Chang, C.J., Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 36, pp. 15681–15686. https://doi.org/10.1073/pnas.1005776107
Minocha, R., Majumdar, R., and Minocha, S.C., Polyamines and abiotic stress in plants: a complex relationship, Front. Plant Sci., 2014, vol. 5, art. ID 175. https://doi.org/10.3389/fpls.2014.00175
Miura, K., Okamoto, H., Okuma, E., Shiba, H., Kamada, H., Hasegawa, P.M., and Murata, Y., SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis, Plant J., 2013, vol. 73, no. 1, pp. 91–104. https://doi.org/10.1111/tpj.12014
Montillet, J.L., Leonhardt, N., Mondy, S., Tranchimand, S., Rumeau, D., Boudsocq, M., Garcia, A.V., Douki, T., Bigear, J., Lauriere, C., Chevalier, A., Castresana, C., and Hirt, H., An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis, PLoS Biol., 2013, vol. 11, no. 3, p. e1001513. https://doi.org/10.1371/journal.pbio.1001513
Mostofa, M.G., Yoshida, N., and Fujita, M., Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems, Plant Growth Regul., 2014, vol. 73, no. 1, pp. 31–44. https://doi.org/10.1007/s10725-013-9865-9
Munemasa, S., Mori, I.C., Murata, Y., Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells, Plant Signal Behav., 2011, vol. 6, no. 7, pp. 939–941. https://doi.org/10.4161/psb.6.7.15439
Nahar, K., Hasanuzzaman, M., Rahman, A., et al., Polyamines confer salt tolerance in Mung Bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems, Front. Plant Sci., 2016, vol. 7, art. ID 1104. https://doi.org/10.3389/fpls.2016.01104
Nahar, K., Motiar, R., Hasanuzzaman, M., Alam, Md.M., Anisur, R., Suzuki, T., and Fujita, M., Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings, Environ. Sci. Pollut. Res., 2016, vol. 23, pp. 21206–21218. https://doi.org/10.1007/s11356-016-7295-8
Nayyar, H. and Chander, S., Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea, J. Agron. Crop Sci., 2004, vol. 190, no. 5, pp. 355–365. https://doi.org/10.1111/j.1439-037X.2004.00106.x
Neill, S.J. and Burnett, E.C., Regulation of gene expression during water deficit stress, Plant Growth Regul., 1999, vol. 29, pp. 23–33. https://doi.org/10.1023/A:1006251631570
Pal, M., Szalai, G., and Janda, T., Speculation: Polyamines are important in abiotic stress signaling, Plant Sci., 2015, vol. 237, pp. 16–23. https://doi.org/10.1016/j.plantsci.2015.05.003
Pal, M., Tajti, J., Szalai, G., Peeva, V., Balazs, V., and Janda, T., Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants, Sci. Rep., 2018, vol. 8, art. ID 12839. https://doi.org/10.1038/s41598-018-31297-6
Pang, X.M., Zhang, Z.Y., Wen, X.P., Ban, Y., and Moriguchi, T., Polyamines, all-purpose players in response to environment stresses in plants, Plant Stress, 2007, vol. 1, no. 2, pp. 173–188.
Pegg, A.E., Functions of polyamines in mammals, J. Biol. Chem., 2016, vol. 291, pp. 14904–14912. https://doi.org/10.1074/jbc.R116.731661
Pinero, M.C., Otálora, G., Collado, J., López-Marín, J., and del Amor, F.M., Foliar application of putrescine before a short-term heat stress improves the quality of melon fruits (Cucumis melo L.), J. Sci. Food Agric., 2021, vol. 101, no. 4, pp. 1428–1435. https://doi.org/10.1002/jsfa.10756
Piterková, J., Luhová, L., Zajoncová, L., Šebela, M., and Petřivalský, M., Modulation of polyamine catabolism in pea seedlings by calcium during salinity stress, Plant Prot. Sci., 2012, vol. 48, no. 2, pp. 53–64. https://doi.org/10.17221/62/2011-PPS
Pottosin, I., Velarde-Buendía, A.-M., Zepeda-Jazo, I., Dobrovinskaya, O., and Shabala, S., Synergism between polyamines and ROS in the induction of Ca2+ and K+ fluxes in roots, Plant Signaling Behav., 2012, vol. 7, no. 9, pp. 1084–1087. https://doi.org/10.4161/psb.21185
Pottosin, I. and Shabala, S., Polyamines control of cation transport across plant membranes: Implications for ion homeostasis and abiotic stress signaling, Front. Plant Sci., 2014, vol. 5, art. ID 154. https://doi.org/10.3389/fpls.2014.00154
Pottosin, I., Velarde-Buendía, A.M., Bose, J., Fuglsang, A.T., and Shabala, S., Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots, J. Exp. Bot., 2014, vol. 65, no. 9, pp. 2463–2472.https://doi.org/10.1093/jxb/eru133
Pradedova, E.V., Nimaeva, O.D., and Salyaev, R.K., Redox processes in biological systems, Russ. J. Plant Physiol., 2017, vol. 64, no. 6, pp. 822–832. https://doi.org/10.1134/S1021443717050107
Qu, Y., An, Z., Zhuang, B., Jing, W., Zhang, Q., and Zhang, W., Copper amine oxidase and phospholipase D act independently in abscisic acid (ABA)-induced stomatal closure in Vicia faba and Arabidopsis, J. Plant Res., 2014, vol. 127, no. 4, pp. 533–544. https://doi.org/10.1007/s10265-014-0633-3
Riemenschneider, A., Wegele, R., Schmidt, A., and Papenbrock, J., Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana, FEBS J., 2005, vol. 272, no. 5, pp. 1291–1304. https://doi.org/10.1111/j.1742-4658.2005.04567.x
Rosales, E.P., Iannone, M., Groppa, M.D., and Benavides, M.P., Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide, Amino Acids, 2012, vol. 42, pp. 857–865. https://doi.org/10.1007/s00726-011-1001-4
Sarwat, M. and Tuteja, N., Hormonal signaling to control stomatal movement during drought stress, Plant Gene, Part B, 2017, vol. 11, pp. 143–153. https://doi.org/10.1016/j.plgene.2017.07.007
Seo, S.Y., Kim, Y.J., and Park, K.Y., Increasing polyamine contents enhanced the stress tolerance via reinforcement of antioxidative properties, Front. Plant Sci., 2019, vol. 10, art. ID 1331. https://doi.org/10.3389/fpls.2019.01331
Shan, C., Zhang, S., and Zhou, Y., Hydrogen sulfide is involved in the regulation of ascorbate-glutathione cycle by exogenous ABA in wheat seedling leaves under osmotic stress, Cereal Res. Commun., 2017, vol. 45, no. 3, pp. 411–420. https://doi.org/10.1556/0806.45.2017.021
Sharova, E.I. and Medvedev, S.S., Redox reactions in apoplast of growing cells, Russ. J. Plant Physiol., 2017, vol. 64, no. 1, pp. 1–14. https://doi.org/10.1134/S1021443717010149
Shen, W., Nada, K., and Tachibana, S., Involvement of polyamines in the chilling tolerance of cucumber cultivars, Plant Physiol., 2000, vol. 124, no. 1, pp. 431–440.https://doi.org/10.1104/pp.124.1.431
Shen, W. and Huber, S.C., Polycations globally enhance binding of 14-3-3ω to target proteins in spinach leaves, Plant Cell Physiol., 2006, vol. 47, pp. 764–771. https://doi.org/10.1093/pcp/pcj050
Shi, H. and Chan, Z., Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway, J. Integr. Plant Biol., 2014, vol. 56, no. 2, pp. 114–121. https://doi.org/10.1111/jipb.12128
Singh, P., Basu, S., and Kumar, G., Polyamines metabolism: A way ahead for abiotic stress tolerance in crop plants, in Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants, Wani, S.H., Ed., Amsterdam: Elsevier, 2018, pp. 39–55. https://doi.org/10.1016/B978-0-12-813066-7.00003-6
Book
Singh, S., Kumar, V., Kapoor. D., Kumar. S., Singh, S., Dhanjal, D.S., Datta, S., Samuel, Jastin., Dey, P., Wang, S., Prasad, R., and Singh, J., Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions, Physiol. Plant, 2020, vol. 168, no. 2, pp. 301–317. https://doi.org/10.1111/ppl.13002
Sobieszczuk-Nowicka, E., Polyamine catabolism adds fuel to leaf senescence, Amino Acids, 2017, vol. 49, no. 1, pp. 49–56. https://doi.org/10.1007/s00726-016-2377-y
Suhita, D., Raghavendra, A.S., Kwak, J.M., and Vavasseur, A., Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure, Plant Physiol., 2004, vol. 134, no. 4, pp. 1536–1545. https://doi.org/10.1104/pp.103.032250
Takahashi, Y., Tahara, M., Yamada, Y., et al., Characterization of the polyamine biosynthetic pathways and salt stress response in Brachypodium distachyon, J. Plant Growth Regul., 2017, vol. 37, pp. 625–634. https://doi.org/10.1007/s00344-017-9761-z
Tang, S., Zhang, H., Li, L., Liu, X., Chen, L., Chen, W., Ding, Y., Exogenous spermidine enhances the photosynthetic and antioxidant capacity of rice under heat stress during early grain-filling period, Funct. Plant Biol., 2018, vol. 45, pp. 911–921. https://doi.org/10.1071/FP17149
Todorova, D., Katerova, Z., Sergiev, I., and Alexieva, V., Role of polyamines in alleviating salt stress, in Ecophysiology and Responses of Plants under Salt Stress, Ahmad, P., Azooz, M.M., and Prasad, M.N.V., Eds., New York: Springer-Verlag, 2013, vol. 13, pp. 355–379.https://doi.org/10.1007/978-1-4614-4747-4_13
Tomar, P.C., Lakra, N., and Mishra, S.N., Cadaverine: A lysine catabolite involved in plant growth and development, Plant Signaling Behav., 2013, vol. 8, art. ID e25850. https://doi.org/10.4161/psb.25850
Toumi, I., Pagoulatou, M.G., Margaritopoulou, T., Milioni, D., and Roubelakis-Angelakis, K.A., Genetically modified heat shock protein90s and polyamine oxidases in Arabidopsis reveal their interaction under heat stress affecting polyamine acetylation, oxidation and homeostasis of reactive oxygen species, Plants (Basel), 2019, vol. 8, no. 9, art. ID 323. https://doi.org/10.3390/plants8090323
Wang, W., Vinocur, B., Shoseyov, O., and Altman, A., Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response, Trends Plant Sci., 2004, vol. 9, no. 5, pp. 244–252. https://doi.org/10.1016/j.tplants.2004.03.006
Wang, L., Hou, Z., Hou, L., Zhao, F., and Liu, X., H2S induced by H2O2 mediates drought-induced stomatal closure in Arabidopsis thaliana, Chinese Bull. Bot., 2012, vol. 47, pp. 217–225. https://doi.org/10.3724/SP.J.1259.2012.00217
Wen, X. and Moriguchi, T., Role of polyamines in stress response in horticultural crops, in Abiotic Stress Biology in Horticultural Plants, Kanayama, Y. and Kochetov, A., Eds., New York: Springer-Verlag, 2015, pp. 35–45. https://doi.org/10.1007/978-4-431-55251-2_3
Book
Wi, S., Kim, W.T., and Park, K.Y., Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants, Plant Cell Rep., 2006, vol. 25, pp. 1111–1121. https://doi.org/10.1007/s00299-006-0160-3
Wimalasekera, R., Villar, C., and Begum, T., and Sche-rer, G.F.E., COPPER AMINE OXIDASE 1 (CuAO1) of Arabidopsis thaliana contributes to abscisic acid-and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction, Mol. Plant, 2011, vol. 4, no. 4, pp. 663–678. https://doi.org/10.1093/mp/ssr023
Wimalasekera, R., Tebartz, F., and Scherer, G.F., Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses, Plant Sci., 2011, vol. 181, no. 5, pp. 593–603. https://doi.org/10.1016/j.plantsci.2011.04.002
Xu, C., Wu, X., and Zhang, H., Impact of D–Arg on drought resistance and endogenous polyamines in mycorrhizal Pinus massoniana, J. Nanjing For. Univ., 2009, vol. 33, pp. 19–23. https://doi.org/10.3969/j.issn.1000-2006.2009.04.004
Yadav, S.K., Pavan, K.D., Tiwari, Y.K., Jainender, J.L.N., Vanaja, M., and Maheswari, M., Exogenous application of bio-regulators for alleviation of heat stress in seedlings of maize, J. Agric. Res., 2017, vol. 2, no. 3, art. ID 000137.
Yamasaki, H. and Cohen, M.F., Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies, Nitric Oxide, 2016, vols. 55–56, pp. 91–100. https://doi.org/10.1016/j.niox.2016.04.002
Yang, B., Wu, J., Gao, F., Wang, J., and Su, G., Polyamine-induced nitric oxide generation and its potential requirement for peroxide in suspension cells of soybean cotyledon node callus, Plant Physiol. Biochem., 2014, vol. 79, pp. 41–47. https://doi.org/10.1016/j.plaphy.2014.02.025
Yastreb, T.O., Kolupaev, Yu.E., Kokorev, A.I., Horielova, E.I., and Dmitriev, A.P., Methyl jasmonate and nitric oxide in regulation of the stomatal apparatus of Arabidopsis thaliana, Cytol. Genet., 2018, vol. 52, no. 6, pp. 400–405. https://doi.org/10.3103/S0095452718060129
Yemets, A.I., Krasylenko, Y.A., and Blume, Y.B., Nitric oxide and UV-B radiation, in Nitric Oxide Action in Abiotic Stress Responses in Plants, Khan, M.N., Mobin, M., Mohammad, F., and Corpas, F.J., Eds., Cham: Springer-Verlag, 2015, pp. 141–154. https://doi.org/10.1007/978-3-319-17804-2_9
Book
Yemets, A.I., Karpets, Yu.V., Kolupaev, Yu.E., and Blume, Ya.B., Emerging technologies for enhancing ROS/RNS homeostasis, in Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms, Hasanuzzaman, M., Fotopoulos, V., Nahar, K., and Fujita, M., Eds., Chichester: Wiley, 2019, vol. 2, pp. 873–922. https://doi.org/10.1002/9781119468677.ch39
Book
Yu, Z., Jia, D., and Liu, T., Polyamine oxidases play various roles in plant development and abiotic stress tolerance, Plants, 2019, vol. 8, art. ID 184. https://doi.org/10.3390/plants8060184
Yun, B.W., Feechan, A., Yin, M., Yin, M., Saidi, N.B.B., Bihan, T.L., Yu, M., Moore, J.W., Kang, J.-G., Kwon, E., Spoel, S.H., Pallas, J.A., and Loake, G.J., S-nitrosylation of NADPH oxidase regulates cell death in plant immunity, Nature, 2011, vol. 478, pp. 264–268. https://doi.org/10.1038/nature
Zhou, R., Hu, Q., Pu, Q., Chen, M., Zhu, X., Gao, C., Zhou, G., Liu, L., Wang, Z., Yang, J., Zhang, J., and Cao, Y., Spermidine enhanced free polyamine levels and expression of polyamine biosynthesis enzyme gene in rice spike lets under heat tolerance before heading, Sci. Rep., 2020, vol. 10, art. ID 8976. https://doi.org/10.1038/s41598-020-64978-2
Ziogas, V., Molassiotis, A., Fotopoulos, V., and Tanou, G., Hydrogen sulfide: A potent tool in postharvest fruit biology and possible mechanism of action, Front. Plant Sci., 2018, vol. 9, art. ID 1375. https://doi.org/10.3389/fpls.2018.01375