Тубулін відіграє ключову роль у функціонуванні систем цитосклету, котрі регулюють такі фундаментальні процеси як поділ та ріст клітини. Коректна ідентифікація ізотипів та визначення ортології генів тубуліну у рослин є нетривіальною задачею, котра вимагає залучення комплексу біоформатичних підходів. В ході проведеного дослідження було здійснено повногеномний пошук та ідентифікацію генів тубуліну у диплоїдних представників роду Camelina, зокрема у видів C. neglecta, C. laxa, C. hispida, що дозволило ідентифікувати повні набори генів α-, β- та γ-тубулінів, а також їх псевдогенів. Філогенетичний аналіз та серія повногеномних порівнянь дозволили встановити ортологію генів тубуліну, визначити ізотипову приналежність кодованих тубулінів та відслідкувати еволюційні зміни в наборах генів тубуліну в ході дивергенції видів та виникнення алогексаплоїдного C. sativa. Генотипування зразків різних представників Camelina за допомогою TBP-, cTBP- та γTBP-маркерів дозволило ефективно диференціювати види на основі оцінки поліморфізму інтронних ділянок генів β- та γ-тубуліну. Одержані результати створюють міцне підгрунтя для подальших досліджень ізотипового та функціонального різноманіття тубулінів у Хрестоцвітих та інших груп квіткових рослин, а також спряють розробленню та впровадженню нових високоефективних систем молекулярних маркерів для ДНК-баркодингу та маркер-опосередкованої селекції, в тому числі й таких перспективних олійних культур як C. sativa.
Ключові слова: Camelina, дикі родичі, тубулін, геномна еволюція, поліплоїдія, ДНК баркодинг, поліморфізм генів тубуліну
Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
Benbouza, H., Jean-Marie, J., and Jean-Pierre, B., Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels, Biotechnol. Agron. Soc. Environ., 2006, vol. 10, no. 2, pp. 77–81
Blume, R.Y., Rabokon, A.N., Postovitova, A.S., et al., Evaluating diversity and breeding perspectives of Ukrainian spring camelina genotypes, Cytol. Genet., 2020, vol. 54, no. 5, pp. 420–436. https://doi.org/10.3103/S0095452720050084
Blume, R.Y., Kalendar, R.N., Guo, L., et al., Overcoming genetic paucity of Camelina sativa: possibilities for interspecific hybridization conditioned by the genus evolution pathway, Front. Plant Sci., 2023, vol. 14, p. 1259431. https://doi.org/10.3389/fpls.2023.1259431
Braglia, L., Gavazzi, F., Gianì, S., et al., Tubulin-Based Polymorphism (TBP) in plant genotyping, Plant Genotyping, 2023, vol. 2638, pp. 387–401. https://doi.org/10.1007/978-1-0716-3024-2_28
Breviario, D., Gianì, S., and Morello, L., Multiple tubulins: evolutionary aspects and biological implications, Plant J., 2013, vol. 75, pp. 202–218. https://doi.org/10.1111/tpj.12243
Brock, J.R., Mandáková, T., McKain, M., et al., Chloroplast phylogenomics in Camelina (Brassicaceae) reveals multiple origins of polyploid species and the maternal lineage of C. sativa, Hortic. Res., 2022a, vol. 9, p. uhab050. https://doi.org/10.1093/hortre/uhab050
Brock, J.R., Ritchey, M.M., Olsen, K.M., et al., Molecular and archaeological evidence on the geographical origin of domestication for Camelina sativa, Am. J. Bot., 2022b, vol. 109, no. 7, pp. 1177–1190. https://doi.org/10.1002/ajb2.16027
Chaudhary, R., Koh, C.S., Kagale, S., et al., Assessing diversity in the Camelina genus provides insights into the genome structure of Camelina sativa, G3:Genes, Genomes, Genet., 2020, vol. 10, no. 4, pp. 1297–1308. https://doi.org/10.1534/g3.119.400957
Chaudhary, R., Koh, C.S., Perumal, S., et al., Sequencing of Camelina neglecta, a diploid progenitor of the hexaploid oilseed Camelina sativa, Plant Biotechnol. J., 2023, vol. 21, pp. 521–535. https://doi.org/10.1111/pbi.13968
Chen, B., Zhao, J., Fu, G., et al., Identification and expression analysis of Tubulin gene family in upland cotton, J. Cotton Res., 2021, vol. 4, p. 20. https://doi.org/10.1186/s42397-021-00097-1
Cheng, F., Wu, J., Fang, L., et al., Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa, PLoS One, 2012, vol. 7, no. 5, p. e36442. https://doi.org/10.1371/journal.pone.0036442
Demchuk, O.N. and Blume, Ya.B., Construction of phylogenetic tree of plant tubulins basing on the homology of their protein sequences, Cytol. Genet., 2005, vol. 39, no. 1, pp. 3–9.
Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, vol. 32, no. 5, pp. 1792–1797. https://doi.org/10.1093/nar/gkh340
Evanno, G., Regnaut, S., and Goudet, J., Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol., 2005, vol. 14, no. 8, pp. 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Faure, J.D. and Tepfer, M., Camelina, a Swiss knife for plant lipid biotechnology, OCL, 2016, vol. 23, no. 5, p. D503. https://doi.org/10.1051/ocl/2016023
Findeisen, P., Muhlhausen, S., Dempewolf, S., et al., Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family, Genome Biol. Evol., 2014, vol. 6, no. 9, pp. 2274–2288. https://doi.org/10.1093/gbe/evu187
Galasso, I., Manca, A., Braglia, L., et al., Genomic Fingerprinting of Camelina Species Using cTBP as Molecular Marker, Am. J. Plant Sci., 2015, vol. 6, pp. 1184–1200. https://doi.org/10.4236/ajps.2015.68122
Gavazzi, F., Pigna, G., Braglia, L., et al., Evolutionary characterization and transcript profiling of β-tubulin genes in flax (Linum usitatissimum L.) during plant development, BMC Plant Biol., 2017, vol. 17, p. 237. https://doi.org/10.1186/s12870-017-1186-0
Ghidoli, M., Ponzoni, E., Araniti, F., et al., Genetic improvement of Camelina sativa (L.) Crantz: Opportunities and Challenges, Plants, 2023, vol. 12, p. 570. https://doi.org/10.3390/plants12030570
Hatje, K., Keller, O., Hammesfahr, B., et al., Cross-species protein sequence and gene structure prediction with fine-tuned Webscipio 2.0 and Scipio, BMC Res. Notes., 2011, vol. 4, p. 265. https://doi.org/10.1186/1756-0500-4-265
Hoang, D.T., Chernomor, O., von Haeseler, A., et al., UFBoot2: Improving the ultrafast bootstrap approximation, Mol. Biol. Evol., 2018, vol. 35, no. 2, pp. 518–522. https://doi.org/10.1093/molbev/msx281
Hoff, K.J. and Stanke, M., WebAUGUSTUS – a web service for training AUGUSTUS and predicting genes in eukaryotes, Nucleic Acids Res., 2013, vol. 41, no. W1, pp. W123–W128. https://doi.org/10.1093/nar/gkt418
Hu, B., GSDS 2.0: an upgraded gene feature visualization server, Bioinformatics, 2015, vol. 31, no. 8, pp. 1296–1297. https://doi.org/10.1093/bioinformatics/btu817
Hu, T., Pattyn, P., Bakker, E., et al., The Arabidopsis lyrata genome sequence and the basis of rapid genome size change, Nat. Genet., 2011, vol. 43, pp. 476–481. https://doi.org/10.1038/ng.807
Hubisz, M.J., Falush, D., Stephens, M., and Pritchard, J.K., Inferring weak population structure with the assistance of sample group information, Mol. Ecol. Resour., 2009, vol. 9, no. 5, pp. 1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x
Jiao, W.B. and Schneeberger, K., Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics, Nat. Commun., 2020, vol. 11, p. 989. https://doi.org/10.1038/s41467-020-14779-y
Jost, W., Baur, A., Nick, P., et al., A large plant beta-tubulin family with minimal C-terminal variation but differences in expression, Gene, 2004, vol. 340, no. 1, pp. 151–160. https://doi.org/10.1016/j.gene.2004.06.009
Kagale, S., Koh, C., Nixon, J., et al., The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure, Nat. Commun., 2014, vol. 5, p. 3706. https://doi.org/10.1038/ncomms4706
Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., et al., ModelFinder: Fast model selection for accurate phylogenetic estimates, Nat. Methods, 2017, vol. 14, pp. 587–589. https://doi.org/10.1038/nmeth.4285
Kopelman, N.M., Mayzel, J., Jakobsson, M., et al., Clumpak: a program for identifying clustering modes and packaging population structure inferences across K, Mol. Ecol. Resour., 2015, vol. 15, pp. 1179–1191. https://doi.org/10.1111/1755-0998.12387
Larralde, M. and Zeller G., PyHMMER: a Python library binding to HMMER for efficient sequence analysis, Bioinformatics, 2023, vol. 39, no. 5, p. btad214. https://doi.org/10.1093/bioinformatics/btad214
Letunic, I. and Bork, P., Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool, Nucleic Acids Res., 2024, vol. 52, no. W1, pp. W78–W82. https://doi.org/10.1093/nar/gkae268
Li, Y.-L. and Liu, J.-X., StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods, Mol. Ecol. Resour., 2018, vol. 18, pp. 176–177. https://doi.org/10.1111/1755-0998.12719
Lowe, J., Li, H., Downing, K.H., and Nogales, E., Refined structure of αβ-tubulin at 3.5 resolution, J. Mol. Biol., 2001, vol. 313, pp. 1045–1057. https://doi.org/10.1006/jmbi.2001.5077
Lykholat, Y.V., Rabokon, A.M., Blume, R.Ya., et al., Characterization of β-tubulin genes in Prunus persica and Prunus dulcis for fingerprinting of their interspecific hybrids, Cytol. Genet., 2022, vol. 56, no. 6, pp. 481–493. https://doi.org/10.3103/S009545272206007X
Manca, A., Pecchia, P., Mapelli, S., et al., Evaluation of genetic diversity in a Camelina sativa (L.) Crantz collection using microsatellite markers and biochemical traits, Genet. Resour. Crop Evol., 2012, vol. 60, pp. 1223–1226. https://doi.org/10.1007/s10722-012-9913-8
Mandáková, T. and Lysak, M.A., The identification of the missing maternal genome of the allohexaploid camelina (Camelina sativa), Plant J., 2022, vol. 112, pp. 622–629. https://doi.org/10.1111/tpj.15931
Mandáková, T., Pouch, M., Brock, J.R., et al., Origin and evolution of diploid and allopolyploid Camelina genomes were accompanied by chromosome shattering, Plant Cell, 2019, vol. 31, no. 11, pp. 2596–2612. https://doi.org/10.1105/tpc.19.00366
Martin, S.L., Lujan-Toro, B., James, T., et al., Insights from the genomes of 4 diploid Camelina spp., G3:Genes, Genomes, Genet., 2022, vol. 12, no. 12, p. jkac182. https://doi.org/10.1093/g3journal/jkac182
Mistry, J., Chuguransky, S., Williams, L., et al., Pfam: The protein families database in 2021, Nucleic Acids Res., 2021, vol. 49, no. D1, pp. D412–D419. https://doi.org/10.1093/nar/gkaa913
Nguyen, L.-T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q., IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies, Mol. Biol. Evol., 2015, vol. 32, pp. 268–274. https://doi.org/10.1093/molbev/msu300
Oakley, R., Wang, Y., Ramakrishna, W., et al., Differential expansion and expression of alpha- and beta-tubulin gene families in Populus, Plant Physiol., 2007, vol. 145, no. 3, pp. 961–973. https://doi.org/10.1104/pp.107.107086
Paysan-Lafosse, T., Blum, M., Chuguransky, S., et al., InterPro in 2022, Nucleic Acid. Res., 2023, vol. 51, no. D1, pp. D418–D427. https://doi.org/10.1093/nar/gkac993
Pirko, Ya.V., Buy, D.D., Postovoitova, A.S., et al., New ILP method based on γ-tubulin genes intron length polymorphism, Rep. Natl. Acad. Sci. Ukr., 2018a, no. 12, pp. 1025–1030
Pirko, Ya.V., Postovoitova, A.S., Rabokon, A.M., et al., Study of intron length polymorphism of the α-tubulin genes as a method of analysis of the genetic differentiation in plants, Ukr. Bot. J., 2018b, vol. 75, no. 6, pp. 576–584
Puechmaille, S.J., The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem, Mol. Ecol. Res., 2016, vol. 16, pp. 608–627. https://doi.org/10.1111/1755-0998.12512
Pydiura, N., Pirko, Y., Galinousky, D., et al., Genome-wide identification, phylogenetic classification, and exon-intron structure characterization of the tubulin and actin genes in flax (Linum usitatissimum), Cell Biol. Int., 2019, vol. 43, no. 9, pp. 1010–1019. https://doi.org/10.1002/cbin.11001
Rabokon, A.M., Intron length polymorphism of tubulin genes as an effective tool for genetic plant differentiation, Rep. Natl. Acad. Sci. Ukr., 2021, no. 10, pp. 30–35. https://doi.org/10.15407/visn2021.10.030
Rabokon, A.M., Blume, R.Y., Sakharova, V.G., et al., Genotyping of interspecific Brassica rapa hybrids implying β-tubulin gene intron length polymorphism (TBP/cTBP) assessment, Cytol. Genet., 2023, vol. 57, no. 6, pp. 538–549. https://doi.org/10.3103/S0095452723060075
Radchuk, V., The transcriptome of the tubulin gene family in plants, in The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology, Blume, Y.B., Baird, W.V., Yemets, A.I., and Breviario, D., Eds., New York: Springer-Verlag, 2008, pp. 219–241. https://doi.org/10.1007/978-1-4020-8843-8_11
Raj, A., Stephens, M., and Pritchard, J.K., fastSTRUCTURE: Variational inference of population structure in large SNP data sets, Genetics, 2014, vol. 197, no. 2, pp. 573–589. https://doi.org/10.1534/genetics.114.164350
Rao, G., Zeng, Y., He, C., and Zhang, J., Characterization and putative post-translational regulation of α- and β-tubulin gene families in Salix arbutifolia, Sci Rep., 2016, vol. 6, p. 19258. https://doi.org/10.1038/srep19258
Sakharova, V.H., Blume, R.Ya., Rabokon, A.N., et al., Efficiency of genetic diversity assessment of little-pod false flax (Camelina microcarpa Andrz. ex DC.) in Ukraine using SSR- and TBP-marker systems, Rep. Natl. Acad. Sci. Ukr., 2023, vol. 4, pp. 85–94. https://doi.org/10.15407/dopovidi2023.04.093
Sakharova, V.H., Blume, R.Y., Rabokon, A.M., et al., Exploring the genetic diversity and population structure of little-pod false flax (Camelina microcarpa: Brassicaceae) in Ukraine, Ukr. Bot. J., 2025, vol. 82, no. 2, pp. 144–161. https://doi.org/10.15407/ukrbotj82.02.144
Sambrook, J. and David, W.R. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, 2001, vol. 2.
Silflow, C.D., Oppenheimer, D.G., Kopozak, S.D., et al., Plant tubulin genes structure and differential expression during development, Dev. Genet., 1987, vol. 8, pp. 435–460. https://doi.org/10.1002/dvg.1020080511
Tang, H., Krishnakumar, V., Zeng, X., et al., JCVI: A versatile toolkit for comparative genomics analysis, Imeta, 2024, vol. 3, no. 4, p. e211. https://doi.org/10.1002/imt2.211
Trifinopoulos, J., Nguyen, L.T., von Haeseler, A., and Minh, B.Q., W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis, Nucleic Acid. Res., 2016, vol. 44, no. W1, pp. W232–W235. https://doi.org/10.1093/nar/gkw256
Vollmann, J. and Eynck, C., Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering, Biotechnol. J., 2015, vol. 10, pp. 525–535. https://doi.org/10.1002/biot.201400200
Wang, J., Chitsaz, F., Derbyshire, M.K., et al., The conserved domain database in 2023, Nucleic Acid. Res., 2023, vol. 51, no. D1, pp. D384–D388. https://doi.org/10.1093/nar/gkac1096
Wang, S., Blume, R.Y., Zhou, Z.-W., et al., Chromosome-level assembly and analysis of Camelina neglecta—a novel diploid model for camelina biotechnology research, Biotechnol. Biofuels Bioprod., 2024, vol. 17, p. 17. https://doi.org/10.1186/s13068-024-02466-9
Wickstead, B. and Gull, K., The evolution of the cytoskeleton, J. Cell Biol., 2011, vol. 194, no. 4, pp. 513–525. https://doi.org/10.1083/jcb.201102065
Yemets, A., Radchuk, V., Bayer, O., et al., Development of transformation vectors based upon a modified plant α-tubulin gene as the selectable marker, Cell Biol. Int., 2008, vol. 32, no. 5, pp. 566–570. https://doi.org/10.1016/j.cellbi.2007.11.012
Yemets, A., Shadrina, R., Blume, R., et al., Autophagy formation, microtubule disorientation, and alteration of ATG8 and tubulin gene expression under simulated microgravity in Arabidopsis thaliana, npj Microgravity, 2024, vol. 10, p. 31. https://doi.org/10.1038/s41526-024-00381-9
Zanetti, F., Alberghini, B., Jeromela, A.M., et al., Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review, Agron. Sustain. Dev., 2021, vol. 41, p. 2. https://doi.org/10.1007/s13593-020-00663-y
Žerdoner Čalasan, A., Seregin, A.P., Hurka, H., et al., The Eurasian steppe belt in time and space: Phylogeny and historical biogeography of the false flax (Camelina Crantz, Camelineae, Brassicaceae), Flora, 2019, vol. 260, p. 151477. https://doi.org/10.1016/j.flora.2019.151477