РЕЗЮМЕ. Мутації, виявлені у посівного жита, були згруповані таким чином: гени самозапилення, мейотичні мутації, гени летальності зародка та дефіциту певних ферментів, хлорофільні мутації, карликові мутації, морфологічні мутації, гени відсутності антоціану та забарвлення зерна. Ознаки мутантів контролювалися рецесивними генами, за винятком домінантної карликовості, генів самозапилення та деяких морфологічних мутацій. Всі мейотичні мутації спричиняли часткову або повну стерильність колоса і підтримувались у гетерозиготному стані. Хлорофільні мутанти поділялися на летальні та напівлетальні, з тією різницею, що останні зазвичай досягали зрілості. Карликові мутанти утворили одну з найбільших груп, в якій характер карликовості 15 номерів визначався одним рецесивним геном. Реакція на гіберелову кислоту була виявлена в чотирнадцяти мутантів, включно з домінантними карликами. Мутації морфологічних ознак також визначалися рецесивними генами, за винятком волосистої піхви листка, весняного росту та восковидного ендосперму. Використання самозапильних мутантів у жита дозволило вивчити генетику інбредних ліній із різним забарвленням зерна (жовтим, зеленим, коричневим і фіолетовим), що залежить головним чином від комбінації рецесивних алелів генів Vi, C і Vs. Створення більшої кількості інбредних ліній дозволило ідентифікувати різні мутації та провести їхнє подальше детальне дослідження з метою підвищення різноманітності зародкової плазми у посівного жита.
Ключові слова: мутантний сорт жита, гени самозапильності, мейотичний, хлорофільні й карликові мутації, відсутність антоціану, морфологічні мутації
Повний текст та додаткові матеріали
Цитована література
Ahloowalia, B.S., Maluszynski, M., and Nichterlein, K., Global impact of mutation-derived varieties, Euphytica, 2004, vol. 135, pp. 187–204. https://doi.org/10.1023/B:EUPH.0000014914.85465.4f
Allan, R.E., Vogel, O.A., and Craddock, J.C.J.R., Comparative response to gibberellic acid of dwarf, semi-dwarf and standard short and tall winter wheat varieties, Agron. J., 1959, vol. 51, pp. 737–740.
Ballesteros, I., Linacero, R., and Vázquez, A.M., Mitochondrial DNA amplification in albino plants of rye (Secale cereale L.) regenerated in vitro, Plant Sci., 2009, vol. 176, no. 6, pp. 722–728. https://doi.org/10.1016/j.plantsci.2009.02.016
Bhat, R.S., Brijesh Patil, M.P., Tilak, I.S., and Shirasawa K., Molecular markers for mutant characterization, in Mutation Breeding for Sustainable Food Production and Climate Resilience, Penna, S. and Jain, S.M., Eds., Singapore: Springer-Verlag, 2023, pp. 205–232. https://doi.org/10.1007/978-981-16-9720-3_8
Börner, A. and Melz, G., Response of rye genotypes differing in plant height to exogenous gibberellic acid application, Arch. Zücht., 1988, vol. 18, pp. 71–74.
Börner, A., Melz, G., and Lenton, J.R., Genetical and physiological studies of gibberellic acid insensitivity in semidwarf rye, Hereditas, 1992, vol. 116, pp. 199–201. https://doi.org/10.1111/j.1601-5223.1992.tb00228.x
Börner, A., Plaschke, J., Korzun, V., and Worland, A.J., The relationships between the dwarfing genes of wheat and rye, Euphytica, 1996, vol. 89, no. 1, pp. 69–75. https://doi.org/10.1007/BF00015721
D’Amato, F. and Hoffmann-Ostenhof, O., Metabolism and spontaneous mutations in plants, Adv. Genet., 1956, vol. 8, pp. 1–28.
Daskalova, N. and Spetsov, P., Taxonomic relationships and genetic variability of wild Secale L. species as a source for valued traits in rye, wheat and triticale breeding, Cytol. Genet., 2020, vol. 54, no. 1, pp. 71–81. https://doi.org/10.3103/S0095452720010041
Daskalova, N. and Spetsov, P., Variation in rye (Secale cereale L.) inbred lines with different type of glaucousness, J. Crop Sci. Biotechnol., 2025, vol. 28, pp. 81–91. https://doi.org/10.1007/s12892-024-00264-1
Daussant, J., Sadowski, J., Rorat, T., Mayer, C., and Laurière. C., Independent regulatory aspects and postranslational modifications of two β-amylases of rye, Plant Physiol., 1991, vol. 96, pp. 84–90. https://doi.org/10.1104/pp.96.1.84
Davidson, F.R., Brewbeker, H.E., and Thompson, N.A., Brittle-straw and other abnormalities in rye, J. Agric. Res., 1924, vol. 28, pp. 169–172.
De Vries, J.N. and Sybenga, J., Chromosomal location of 17 monogenically inherited morphological markers in rye (Secale cereale L.) using the translocation tester set, Z. Pflanzenzücht, 1984, vol. 92, pp. 117–139.
Devos, K.M., Atkinson, M.D., Chinoy, C.N., Francis, H.A., et al., Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet., 1993, vol. 85, pp. 673–680.
Dobrovolskaya, O., Martinek, P., Voylokov, A.V., Korzun, V., and Börner, A., Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale), Theor. Appl. Genet., 2009, vol. 119, pp. 867–874. https://doi.org/10.1007/s00122-009-1095-1
Feldman, M. and Levy, A.A., Secale L., Wheat Evolution and Domestication, Feldman, M. and Levy, A.A., Eds., Cham: Springer, 2023, pp. 159–195. https://doi.org/10.1007/978-3-031-30175-9_6
Figueiras, A.M., Peña, A., and César Benito, High mutability in rye (Secale cereale L.), Mutat. Res. Lett., 1991, vol. 264, no. 4, pp. 171–177. https://doi.org/10.1016/0165-7992(91)90073-D
Fröst, S., Vaivars, L., and Carlbom, C., Reciprocal extrachromosomal inheritance in rye (Secale cereale L.), Hereditas, 1970, vol. 65, pp. 251–260.
Gabara, B. and Kubicka, H., Lethal chlorophyll change resulting in a light-violet colour in winter rye (Secale cereale L.) seedlings, Acta Soc. Bot. Pol., 1989, vol. 58, no. 3, pp. 321–325.
Gabara, B. and Kubicka, H., Comparison of lethal and semi lethal chlorophyll mutants characterized by different expression of genes responsible for colour of leaves in winter rye (Secale cereale L.), Caryologia, 2000, vol. 53, nos. 3–4, pp. 227–234. https://doi.org/10.1080/00087114.2000.10589200
Gertz, A. and Wricke, G., Linkage between the incompatibility locus Z and a β-glucosidase locus in rye, Plant Breed., 1989, vol. 102, pp. 255–259. https://doi.org/10.1111/j.1439-0523.1989.tb00344.x
Golubtsov, S.V., Sosnikhina, S.P., Iordanskaya, I.V., Voilokov, A.V., et al., Semisterile meiotic mutant sy11 with heterologous chromosome synapsis in rye Secale cereale L., Russ. J. Genet., 2010, vol. 46, pp. 682–688. https://doi.org/10.1134/S1022795410060086
Góralska, M., Bińkowski, J., Lenarczyk, N., Bienias, A., et al., How machine learning methods helped find putative rye wax genes among GBS data, Int. J. Mol. Sci., 2020, vol. 21, pp. 7501. https://doi.org/10.3390/ijms21207501
Grądzielewska, A., Milczarski, P., Molik, K., and Pawłowska, E., Identification and mapping of a new recessive dwarfing gene dw9 on the 6RL rye chromosome and its phenotypic effects, PLoS One, 2020, vol. 15, no. 3, p. e0229564. https://doi.org/10.1371/journal.pone.0229564
Hackauf, B. and Wehling, P., Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics, Theor. Appl. Genet., 2005, vol. 110, pp. 832–845. https://doi.org/10.1007/s00122-004-1869-4
Hackauf, B., Siekmann, D., and Fromme, F.J., Improving yield and yield stability in winter rye by hybrid breeding, Plants, 2022, vol. 11, p. 2666. https://doi.org/10.3390/plants11192666
Innocenti, A.M., Bitonti, M.B, and Stella, A., Different nuclear damage pattern during the lifespan of Secale cereale polymorphic seeds, Caryologia, 1992, vol. 45, nos. 3–4, pp. 237–242. https://doi.org/10.1080/00087114.1992.10797227
Jia, Y., Selva, C., Zhang, Y., Li, B., et al., Uncovering the evolutionary origin of blue anthocyanins in cereal grains, Plant J., 2020, vol. 101, pp. 1057–1074. https://doi.org/10.1111/tpj.14557
Kantarek, Z., Masojś, P., Bienias, A., and Milczarski, P., Identification of a novel, dominant dwarfing gene (Ddw4) and its effect on morphological traits of rye, PLoS One, 2018, vol. 13, no. 6, p. e0199335. https://doi.org/10.1371/journal.pone.0199335
Kaur, D. and Singhal, V.K., Meiotic abnormalities affect genetic constitution and pollen viability in dicots from Indian cold deserts, BMC Plant Biol., 2019, vol. 19, p. 10. https://doi.org/10.1186/s12870-018-1596-7
Konovalov, A.A., Shundrina, I.K., Karpova, E.V., and Mamatyuk, V.I., Physicochemical properties of culms in rye (Secale cereale L.) with a brittle stem, Russ. J. Genet., Appl. Res., 2013, vol. 3, pp. 455–463. https://doi.org/10.1134/S207905971306004X
Korzun, V., Melz, G., and Börner, A., RFLP mapping of the dwarfing (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale cereale L.), Theor. Appl. Genet., 1996, vol. 92, pp. 1073–1077. https://doi.org/10.1007/BF00224051
Korzun, V., Malyshev, S., Voylokov, A., and Börner, A., RFLP-based mapping of three mutant loci in rye (Secale cereale L.) and their relation to homoeologous loci within the Gramineae, Theor. Appl. Genet., 1997, vol. 95, pp. 468–473. https://doi.org/10.1007/s001220050584
Kubicka, H., Winter rye (Secale cereale L.) plants with leaf-awned spikes selected in inbred generation, Genet. Pol., 1992, vol. 33, pp. 3, pp. 173–178.
Kubicka, H., Plants of winter rye (Secale cereale L.) with coalesced stamens, Genet. Pol., 1993, vol. 34, no. 2, pp. 115–119.
Kubicka, H. and Kubicki, B., A form of winter rye (Secale cereale L.) with onion-accreted leaves, Genet. Pol., 1986, vol. 27, nos. 3–4, pp. 213–218.
Kubicka, H. and Kubicki, B., The inheritance and characteristic of two types of dwarfness in winter rye (S. cereale L.), Genet. Pol., 1990, vol. 31, no. l, pp. 9–19.
Kubicka, H. and Malepszy, S., Induced mutations in winter rye (Secale cereale L.) I. Dwarf mutant with an increased number of internodes, Genet. Pol., 1991, vol. 32, no. 4, pp. 209–216.
Kubicka, H., Kubicki, B., Kuras, M., and Gabara, B., Genetic and ultrastructural studies on chlorophyll mutant of winter rye Secale cereale L., Genet. Pol., 1986, vol. 27, nos. 3–4, pp. 189–198.
Kubicka, H., Gabara, B., and Janas, K., Yellowish-brown changes on leaves of winter rye (Secale cereale L.), Caryologia, 1998, vol. 51, nos. 3–4, pp. 303–310. https://doi.org/10.1080/00087114.1998.10797421
Kubicka, H., Gabara, B., and Janas, K., White yellow virescent pattern in winter rye: inheritance, plant growth, and ultrastructure of plastids, J. Hered., 2000, vol. 91, pp. 237–241. https://doi.org/10.1093/jhered/91.3.237
Kubicka, H., Gabara, B., and Wolska, A., The trait of transversal, yellow stripes on leaves of rye (Secale cereale L.), Caryologia, 2007, vol. 60, no. 4, pp. 325–330. https://doi.org/10.1080/00087114.2007.10797955
Li, Z., Ren, T., Yan, B., Tan, F., Yang, M., and Ren, Z., A mutant with expression deletion of gene Sec-1 in a 1RS.1BL line and its effect on production quality of wheat, PLoS One, 2016, vol. 11, no. 1, p. e0146943. https://doi.org/10.1371/journal.pone.0146943
Lykholay, A.N., Vladimirov, I.A., Andreeva, E.A., Smirnov, V.G., and Voylokov, A.V., Genetics of anthocyaninless rye, Russ. J. Genet., 2014, vol. 50, pp. 1102–1106. https://doi.org/10.1134/S1022795414100081
Malyshev, S., Korzun, V., Voylokov, A., Smirnov, V., and Börner, A., Linkage mapping of mutant loci in rye (Secale cereale L.). Theor. Appl. Genet., 2001, vol. 103, pp. 70–74. https://doi.org/10.1007/s001220000504
Melonek, J., Korzun, V., and Hackauf, B., Genomics of self-incompatibility and male-fertility restoration in rye, in The Rye Genome. Compendium of Plant Genomes, Rabanus-Wallace, M.T. and Stein, N., Eds., Springer-Verlag, 2021, pp. 181–212. https://doi.org/10.1007/978-3-030-83383-1_10
Melz, G., Genetical analysis of rye (Secale cereale L.) iv. Localization of genes for hairy leaf sheath and hairy peduncles, Genet. Pol., 1987, vol. 28, no. 4, pp. 319–325.
Melz, G., Contributions to the genetics of rye, Ph. D. Thesis, Berlin: Univ. of AdL, 1989.
Melz, G. and Dill, P., Genetic analysis of rye (Secale cereale L.). Genetics and location of the genes gd and Ha3 of the mutant “grass dwarfness”, Arch. Züchtungsforsch., 1988, vol. 18, no. 6, pp. 363–367.
Melz, G., Melz, G., and Winkel, A., Genetical analysis of rye (Secale cereale L.) III. Self-fertility of the rye mutant vd– inheritance and gene location, Genet. Pol., 1987, vol. 28, nos. 1–2, pp. 1–9.
Melz, G., Kaczmarek, J., and Szigat, G., Genetical analysis of rye (Secale cereale L.). Location of self-fertility genes in different inbred lines, Genet. Pol., 1990, vol. 31, no. 1, pp. 1–7.
Micke, A. and Weiner, M., List of mutant varieties, Mutat. Breed. Newsl., 1976, vol. 7, pp. 12–15.
Mikhailova, E.I., Lovtsyus, A.V., and Sosnikhina, S.P., Some features of meiosis key events in rye and its synaptic mutants, Russ. J. Genet., 2010, vol. 46, pp. 1210–1213. https://doi.org/10.1134/S1022795410100170
Muszyńska, A., Histological, ultrastructural, elemental, and molecular genetic characterization of ′Stabilstroh’, a complex trait of rye (Secale cereale L.) determining lodging resistance, Ph. D. Thesis, Saale: Univ. of Halle, 2018.
Muszynska, A., Guendel, A., Melzer, M., Moya, Y.A.T., et al., A mechanistic view on lodging resistance in rye and wheat: a multiscale comparative study, Plant Botechnol. J., 2021, vol. 19, no. 12, pp. 2646–2661. https://doi.org/10.1111/pbi.13689
Nilsson-Ehle, H., Einige beobachtungen aber erbliche Variationen der chlorophylleigenschaft bei den Getreidearten, Z. Indukt. Abstamm.-Vererbungsl., 1913, vol. 9, pp. 289–300.
Nilsson, N. and Lundqvist, A., The origin of self-compatibility in rye, Hereditas, 1960, vol. 46, no. 1–2, pp. 1–19.
Plaschke, J., Börner, A., Xie, D.X., Koebner, R.M., Schlegel, R., and Gale, M.D., RFLP mapping of genes affecting plant height and growth habit in rye, Theor. Appl. Genet., 1993, vol. 85, no. 8, pp. 1049–1054. https://doi.org/10.1007/BF00215046
Plaschke, J., Korzun, V., Koebner, R.M.D., and Börner, A., Mapping the GA3-insensitive dwarfing gene ct1 on chromosome 7 in rye, Plant Breed., 1995, vol. 114, no. 2, pp. 113–116. https://doi.org/10.1111/j.1439-0523.1995.tb00773.x
Rorat, T., Sadowski, J., Irzykowski, W., Ziegler, P., and Daussant, J., Differential expression of two β-amylase genes of rye during seed development. Physiol. Plant., 1995, vol. 94, no. 1, pp. 19–24. https://doi.org/10.1111/j.1399-3054.1995.tb00778.x
Ruebenbauer, A., Kubara-Szpunar, Ł., and Pająk, K., Inheritance of violet coloration in rye kernels (Secale cereale L.), Genet. Pol., 1983, vol. 24, no. 4, pp. 313–316.
Schlegel, R. and Korzun, V., Genes, markers and linkage data of rye (Secale cereale L.), 12th updated inventory, 2022, vol. 01.22, pp. 1–115. http://www.rye-gene-map.de. Accessed September 30, 2024
Schlegel, R., Melz, G., and Korzun, V., Genes, marker and linkage data of rye (Secale cereale L.): 5th updated inventory, Euphytica, 1998, vol. 101, pp. 23–67. https://doi.org/10.1023/A:1018351008889
Schlegel, R., Eifler, J., Schmidt, M., Schmiedchen, B., Ordon, F., and Kastirr, U., Screening and genetic studies on resistance to Soil-born Cereal Mosaic Virus (SBWMV) in rye, Cereal Res. Commun., 2021, vol. 49, pp. 401–412. https://doi.org/10.1007/s42976-020-00105-1
Senft, P. and Wricke, G., An extended genetic map of rye (Secale cereale L.), Plant Breed., 1996, vol. 115, no. 6, pp. 508–510. https://doi.org/10.1111/j.1439-0523.1996.tb00966.x
Siekmann, D., Jansen, G., Zaar, A., Kilian, A., Fromme, F.J., and Hackauf, B., A genome-wide association study pinpoints quantitative trait genes for plant height, heading date, grain quality, and yield in rye (Secale cereale L.), Front. Plant Sci., 2021, vol. 12, p. 718081. https://doi.org/10.3389/fpls.2021.718081
Sivasankar, S., Crop improvement through induced genetic diversity and mutation breeding: challenges and opportunities, in Mutation Breeding for Sustainable Food Production and Climate Resilience, Penna, S. and Jain, S.M., Eds, Singapore: Springer Nature, 2023, pp. 293–300. https://doi.org/10.1007/978-981-16-9720-3_11
Sopova, J.V., Zykin, P.A., Dolmatovich, T.V., and Sosnikhina, S.P., Search for candidate genes for mutations disrupting synaptonemal complex formation in the sequenced genome of rye Secale cereale, Russ. J. Genet., 2023, vol. 59, pp. 729–731. https://link.springer.com/article/10.1134/S1022795423070128.
Sosnikhina, S.P., Kirillova, G.A., Tikholiz, O.A., Mikhailova, E.I., Priyatkina, S.N., and Smirnov, V.G., Genetic analysis of mutation sy2 which causes nonhomologous meiotic synapsis in chromosomes of diploid rye Secale cereale L., Russ. J. Genet., 2002, vol. 38, pp. 269–276. https://doi.org/10.1023/A:1014802801516
Sosnikhina, S.P., Mikhailova, E.I., Tikholiz, O.A., Priyatkina, S.N., Smirnov, V.G., Voylokov, A.V., Fedotova, Yu. S., Kolomiets, O.L., and Bogdanov, Yu. F., Genetic collection of meiotic mutants of rye Secale cereale L., Russ. J. Genet., 2005, vol. 41, pp. 1071–1080. https://link.springer.com/article/10.1007/s11177-005-0202-x.
Sosnikhina, S.P., Mikhailova, E.I., Tikholiz, O.A., Tsvetkova, N.V., et al., Expression and inheritance of a desynaptic phenotype with impaired homologous synapsis in rye, Russ. J. Genet., 2007, vol. 43, pp. 1193–1200. https://doi.org/10.1134/S1022795407100146
Stojałowski, S., Myśków, B., and Hanek, M., Phenotypic effect and chromosomal localization of Ddw3, the dominant dwarfing gene in rye (Secale cereale L.), Euphytica, 2015, vol. 201, pp. 43–52. https://doi.org/10.1007/s10681-014-1173-6
Sybenga, J. and Prakken, R., Gene analysis in rye, Genetica, 1963, vol. 33, pp. 95–105.
Tikhenko, N., Tsvetkova, N., Priyatkina, S., Voylokov, A., and Börner, A., Gene mutations in rye causing embryo lethality in hybrids with wheat: allelism and chromosome localization, Biol. Plant., 2011, vol. 55, no. 3, pp. 448–452. https://doi.org/10.1007/s10535-011-0109-4
Tikhenko, N., Max Haupt, Fuchs, J., Perovic, D., Himmelbach, A., Mascher, M., Houben, A., Rutten, T., Nagel, M., Tsvetkova, N.V., Sehmisch, S., and Börner, A., Major chromosome rearrangements in intergeneric wheat x rye hybrids in compatible and incompatible crosses detected by GBS read coverage analysis, Sci. Rep., 2024, vol. 14, p. 11010. https://doi.org/10.1038/s41598-024-61622-1
UPOV Code: SECAL_CER, Protocol for tests on distinctness, uniformity and stability Secale cereale L. rye, CPVO·OCVV Community Plant Variety Office, 2022, pp. 1–25
Voylokov, A.V., Korzun, V., and Börner, A., Mapping of three self-fertility mutations in rye (Secale cereale L.) using RFLP, isozyme and morphological markers, Theor. Appl. Genet., 1998, vol. 97, pp. 147–153. https://doi.org/10.1007/s001220050879
Voylokov, A.V., Lykholay, A.N., and Smirnov, V.G., Genetic control of anthocyanin coloration in rye, Russ. J. Genet. Appl. Res., 2015, vol. 5, no. 3, pp. 262–267. https://doi.org/10.1134/S207905971503020X
Wang, Y., Liu, Y., Yu, C., Chen, S., Li, Y., Wei, L., Wu, J., and Yang, J., Identification of a rye spring mutant derived from a winter rye variety by high-altitude environment screening using RNA sequencing technology, Genes, 2024, vol. 15, p. 572. https://doi.org/10.3390/genes15050572
Winkel-Shirley, B., Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology, Plant Physiol., 2001, vol. 126, pp. 485–493. https://doi.org/10.1104/pp.126.2.485
Zykin, P.A., Andreeva, E.A., Lykholay, A.N., Tsvetkova, N.V., and Voylokov, A.V., Anthocyanin composition and content in rye plants with different grain color, Molecules, 2018, vol. 23, p. 948. https://doi.org/10.3390/molecules23040948