Цитологія і генетика 2025, том 59, № 2, 20-30
Cytology and Genetics 2025, том 59, № 2, 159–167, doi: https://www.doi.org/10.3103/S0095452725020021

Накопичення калози в проростках озимої пшениці при УФ-В опроміненні

Бобошко О.П., Ковбасенко Р.В., Галкіна К.О., Симоненко Ю.В., Міхєєв О.М., Ємельянов В.І.

  1. Інститут клітинної біології та генетичної інженерії НАН України, вул. Академіка Заболотного, 148, Київ, 03143, Україна
  2. Інститут фізіології рослин і генетики НАН України, вул. Васильківська, 31/17, Київ, 03022, Україна
  3. Інститут високих технологій Київський університет імені Тараса Шевченка, проспект Академіка Глушкова, 4, Київ, 03022, Україна

Вперше визначено ростові показники та кількість ка-лози, накопиченої в проростках озимої м’якої пшениці (Triticum aestivum L.) сорту Ренан при опроміненні їх ультрафіолетом В у діапазоні доз 0,1–10 кДж/м2. Проаналізовано відмінності ростових показників контрольних та УФ-B-опромінених рослин озимої пшениці. Відмічено інгібуючий ефект УФ-В опромінення щодо росту експериментальних рослин порівняно з контрольними, який пов’язаний з морфо-фізіологічними особливостями індукованого накопичення калози в клітинах проростків озимої пшениці. Ростові показники опромінених рослин впродовж 5 діб були меншими відносно контрольних, приріст яких у середньому складав 1,6 см на добу, та найнижчими за впливу на них дози 10 кДж/м2. Проаналізовано результати щодо конститутивного та індукованого накопичення калози, як первинного захисного бар’єру в реакціях імунної відповіді, що зумовлює підвищену стійкість рослин пшениці сорту Ренан до абіотичного стресу.

Ключові слова: Triticum aestivum, калоза, пшениця, УФ-В-опромінення

Цитологія і генетика
2025, том 59, № 2, 20-30

Current Issue
Cytology and Genetics
2025, том 59, № 2, 159–167,
doi: 10.3103/S0095452725020021

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

Ballaré, C.L., Scopel, A.L., Stapleton, A.E., and Yanovsky, M.J., Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox, Plant Physiol., 1996, vol. 112, no. 1, pp. 161–170. https://doi.org/10.1104/pp.112.1.161

Ballaré, C.L., Caldwell, M.M., Flint, S.D., Robinson, S.A., and Bornman, J.F., Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change, Photochem. Photobiol. Sci., 2011, vol. 10, no. 2, pp. 226–241. https://doi.org/10.1039/c0pp90035d

Barratt, D.H., Kölling, K., Graf, A., Pike, M., Calder, G., Findlay, K., Zeeman, S.C., and Smith, A.M., Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis, Plant Physiol., 2011, vol. 155, no. 1, pp. 328–341. https://doi.org/10.1104/pp.110.166330

Bashandy, T., Taconnat, L., Renou, J.P, Meyer, Y., and Reichheld, J.P., Accumulation of flavonoids in an ntra ntrb mutant leads to tolerance to UV-C, Mol. Plant., 2009, vol. 2, no. 2, pp. 249–258. https://doi.org/10.1093/mp/ssn065

Boboshko, O., Emelyanov, V., Panyuta, O., and Taran, N., Constitutional and induced accumulation of callose and phenol compounds as elements of systemic resistance in winter wheat sprouts, Cytol. Genet., 2019, vol. 53, no. 5, pp. 35–45. https://doi.org/10.3103/S0095452719050049

Bornman, J., Evert, R., and Mierzwa, R., The effect of UV‑B and UV-C radiation on sugar beet leaves, Protoplasma, 1983, vol. 117, pp. 7–16. https://doi.org/10.1007/BF01281779

Britt, A.B., Molecular genetics of DNA repair in higher plants, Trends Plant Sci., 1999, vol. 4, pp. 20–25. https://doi.org/10.1016/s1360-1385(98)01355-7

Chowdhury, J., Henderson, M., Schweizer, P., Burton, R.A., Fincher, G.B., and Little, A.C., Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. hordei, New Phytol., 2014, vol. 3, no. 204, pp. 650–660. https://doi.org/10.1111/nph.12974

Cle, C., et al., Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance, Phytochemistry, 2008, vol. 69, no. 11, pp. 2149–2156. https://doi.org/10.1016/j.phytochem.2008.04.024

Cook, D.E., Mesarich, C.H., and Thomma, B.P., Understanding plant immunity as a surveillance system to detect invasion, Ann. Rev. Phytopathol., 2015, vol. 53, pp. 541–563. https://doi.org/10.1146/annurev-phyto-080614-120114

Currier, H.B. and Webster, D.H., Callose formation and subsequent disappearance: studies in ultrasound stimulation, Plant Physiol., 1964, vol. 39, pp. 843–847. https://doi.org/10.1104/pp.39.5.843

Danon, A. and Gallois, P., UV-C radiation induces apoptotic-like changes in Arabidopsis thaliana, FEBS Lett., 1998, vol. 437, pp. 131–136. https://doi.org/10.1016/s0014-5793(98)01208-3

Emelyanov, V.I., Kravchuk, J.N., Poliakovskiy, S.O., and Dmitriev, O.P., Callose accumulation during treatment of tomato (Lycopersicon esculentum L.) cells with biotic elicitors, Cytol. Genet., 2008, vol. 42, no. 2, pp. 21–28.

Emelyanov, V.I., Polyakovskiy, S.A., Sakada, V.I., and Grodzinskiy, D.M., Plant cells formed their protective structures use molecules of phytopathogenic microorganisms, Rep. Natl. Acad. Sci. Ukr., 2018, vol. 3, pp. 110–115. https://doi.org/10.15407/dopovidi2018.03.110

Ferrazzano, G.F., Amato, I., Ingenito, A., Natale De, A., and Pollio, A., Anti-cariogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea), Fitoterapia, 2009, vol. 80, no. 20, pp. 255–262. https://doi.org/10.1016/j.fitote.2009.04.006

Galway, M.E. and McCully, M.E., The time course of the induction of callose in wounded pea roots, Protoplasma, 1987, vol. 139, pp. 77–91. https://doi.org/10.1007/BF01282278

Gupta, S.K. and Tripathi, S.C., Fungitoxic Activity of Solanum torvum against Fusarium sacchari, Plant Prot. Sci., 2011, vol. 47, no. 3, pp. 83–91. https://doi.org/10.17221/56/2010-PPS

Han, X., et al., Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling, Dev. Cell, 2014, vol. 28, pp. 132–146. https://doi.org/10.1016/j.devcel.2013.12.008

Hectors, K., Van Oevelen, S., Geuns, J., Guisez, Y., Jansen, M.A.K., and Prinsen, E., Dynamic changes in plant secondary metabolites during UV acclimation in Arabidopsis thaliana, Physiol. Plant., 2014, vol. 152, pp. 219–230. https://doi.org/10.1111/ppl.12168

Karou, D., Dicko, M.H., Simpore, J., and Traore, A.S., Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso, Afr. J. Biotechnol., 2005, vol. 4, pp. 823–828. https://edepot.wur.nl/33530

Kauss, H., Jeblick, W., and Domard, A., The degrees of polymerization and N-acetylation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts of Catharanthus roseus, Planta, 1989, vol. 178, no. 3, pp. 385–392.

Landry, L.G., Chapple, C.C., and Last, R.L., Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage, Plant Physiol., 1995, vol. 109, pp. 1159–1166. https://doi.org/10.1104/pp.109.4.1159

Li, J., Ou-Lee, T.M., Raba, R., Amundson, R.G., and Last, R.L., Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation, Plant Cell, 1993, vol. 5, pp. 171–179. https://doi.org/10.1105/tpc.5.2.171

Li, N., Lin, Z., Yu, P., Zeng, Y., Du, S., and Huang, L.J., The multifarious role of callose and callose synthase in plant development and environment interactions, Front. Plant Sci., 2023, vol. 14, p. 1183402. https://doi.org/10.3389/fpls.2023.1183402

Lytvyn, D.I., Yemets, A.I., and Blume, Y.B., UV-B overexposure induces programmed cell death in a BY-2 tobacco cell line, Environ. Exp. Bot., 2010, vol. 68, no. 1, pp. 51–57. https://doi.org/10.1016/j

Mackerness, S.A.H., Surplus, S.L., Blake, P., John, C.F., Buchanan-Wollaston, V., Jordan, B.R., and Thomas, B., Ultraviolet-B-induced stress and changes in gene expression in Arabidopsis thaliana: role of signalling pathways controlled by jasmonic acid, ethylene and reactive oxygen species, Plant Cell Environ., 1999, vol. 22, pp. 1413–1423. https://doi.org/10.1046/j.1365-3040.1999.00499.x

Mazza, C.A., Gimenez, P.I., Kantolic, A.G., and Ballare, C.L., Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions, Physiol. Plant., 2013, vol. 147, pp. 307–315. https://doi.org/10.1111/j.1399-3054.2012.01661.x

McLusky, S.R., Bennett, M.H., Beale, M.H., Lewis, M.J., Gaskin, P., and Mansfield, J.W., Cell wall alterations and localized accumulation of feruloyl-30-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis, Plant J., 1999, vol. 17, no. 5, pp. 523–534.

Mintoff, S.J., Rookes, J.E., and Cahill, D.M., Sub-lethal UV–C radiation induces callose, hydrogen peroxide and defence-related gene expression in Arabidopsis thaliana, Plant Biol., 2015, vol. 17, no. 3, pp. 703–711. https://doi.org/10.1111/plb.12286

Nawrath, C., Heck, S., Parinthawong, N., and Metraux, J.P., EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family, Plant Cell, 2002, vol. 14, pp. 275–286. https://doi.org/10.1105/tpc.010376

Nedukha, O.M., Callose: localization, functions, and synthesis in plant cells, Cytol. Genet., 2015, vol. 49, no. 1, pp. 49–57. https://doi.org/10.3103/S0095452715010090

Newman, M.A., Dow, J.M., Molinaro, A., and Parrilli, M., Priming, induction and modulation of plant defense responses by bacteria lipopolysaccharides, J. Endotoxin Res., 2007, vol. 13, pp. 69–84. https://doi.org/10.1177/0968051907079399

Newsham, K.K. and Robinson, S.A., Responses of plants in polar regions to UVB exposure: a metaanalysis, Global Change Biol., 2009, vol. 15, pp. 2574–2589. https://doi.org/10.1111/j.1365-2486.2009.01944.x

Panyuta, O.O., Belava, V.N., and Taran, N.Y., Ukr. Patent 389960, Byull. Izobret., 2014, no. 9.

Sanders, R.A. and Hiatt, W., Tomato transgene structure and silencing, Nat. Biotechnol., 2005, vol. 3, no. 23, pp. 287–289.

Song, L., Wang, R., Zhang, L., Wang, Y., and Yao, S., CRR1 encoding callose synthase functions in ovary expansion by affecting vascular cell patterning in rice, Plant J., 2016, vol. 88, pp. 620–632. https://doi.org/10.1111/tpj.13287

Sontheimer, E.J. and Barrangou, R., The bacterial origins of the CRISPR genome-editing revolution, Hum. Gene Ther., 2015, vol. 26, no. 7, pp. 413–424. https://doi.org/10.1089/hum.2015.091

Stass, A. and Horst, W.J., Callose in Abiotic Stress. Chemistry, Biochemistry, and Biology of 1-3 Beta Glucans and Related Polysaccharides, 2009, pp. 499–524. https://doi.org/10.1016/b978-0-12-373971-1.00015-7

The patent for utility model 389960, Ukraine, A01N 1/04. Method of infection to assess the stability of winter wheat to the pathogen tserkosporelozu, Panyuta O.O. Belava V.N Taran N.Y. Bull. № 9. Applications. 01/11/2013. Publish. 05/12/2014 (in Ukraine)

Underwood, W., The plant cell wall: a dynamic barrier against pathogen invasion, Front. Plant Sci., 2012, vol. 4, no. 8, pp. 48–593. https://doi.org/10.3389/fpls.2012.00085

Vonarx, E., Mitchell, H., Karthikeyan, R., Chatterjee, I., and Kunz, B., DNA repair in higher plants, Mutat. Res., 1998, vol. 400, pp. 187–200. https://doi.org/10.1016/s0027-5107(98)00043-8

Wu, S.W., Kumar, R., Iswanto, A.B.B., and Kim, J.Y., Callose balancing at plasmodesmata, J. Exp. Bot., 2018, vol. 69, pp. 5325–5339. https://doi.org/10.1093/jxb/ery317

Zacchini, M. and de Agazio, M., Spread of oxidative damage and antioxidative response through cell layers of tobacco callus after UV-C treatment, Plant Physiol. Biochem., 2004, vol. 42, pp. 445–450. https://doi.org/10.1016/j.plaphy.2004.03.007

Zeyen, R.J., Carver, T.L.W., and Lyngkjær, M.F., Epidermal cell papillae, in The Powdery Mildews: a Comprehensive Treatise, Minnesota: APS Press, 2002, pp. 107–125.

Zhuk, V.V., Mikheev, A.N., and Ovsyannikova, L.G., Effect of chronic ultraviolet b radiation on pea plants, Fact. .Exp. Evol. Org., 2022, vol. 30, pp. 67–72. https://doi.org/10.7124/FEEO.v30.1463

Zipfel, C., Pattern-recognition receptors in plant innate immunity, Curr. Opin. Immunol., 2008, vol. 20, pp. 10–16. https://doi.org/10.1016/j.coi.2007.11.003