Досліджено організацію промоторів генів-ортологів ТФ DREB2B, що залучені до відповіді на абіотичні стреси, у рослини-екстремофіла D. antarctica E. Desv та ще 12 видів злаків із різною холодо- та посухостійкістю. Еволюційні дистанції між послідовностями промоторів у середньому становили 0,621, між кодувальними послідовностями, включно з інтронами, – 0,442, значення нуклеотидної різноманітності (π) цих ділянок становили 0,410 і 0,274, відповідно. Кластеризація послідовностей загалом відповідала прийнятому систематичному поділу родини Poaceae на підродини. Виявлено 54 цис-елементи, залучені до відповіді на дію абіотичних та біотичних стресів, світла, гормонів, зокрема абсцизової кислоти, ауксину, метилжасмонату, етилену, гібереліну та саліцилової кислоти, тканиноспецифічні цис-елементи. Велика частка знайдених цис-елементів були пов’язані із відповіддю на абіотичний стрес, що узгоджується з даними про функції ТФ DREB2B. За виключенням одиничних особливостей, представники різних підродин злаків та D. antarctica були подібними за загальним набором цис-елементів у складі промотора DREB2B, що свідчить про подібність регуляції експресії цього гена і його потенційних функцій у відповіді на стрес у досліджених видів.
Ключові слова: абіотичний та біотичний стрес, транскрипційні фактори DREB2B, цис-елементи, злаки
Повний текст та додаткові матеріали
Цитована література
Akbudak, M.A., Filiz, E., and Kontbay, K., DREB2 (dehydration-responsive element-binding protein 2) type transcription factor in sorghum (Sorghum bicolor): genome-wide identification, characterization and expression profiles under cadmium and salt stresses, 3 Biotech, 2018, vol. 8, no. 10, art. ID 426. https://doi.org/10.1007/s13205-018-1454-1
Alves, G.S.C., Torres, L.F., de Aquino, S.O., et al., Nucleotide diversity of the coding and promoter regions of DREB1D, a candidate gene for drought tolerance in Coffea species, Trop. Plant Biol., 2018, vol. 11, pp. 31–48. https://doi.org/10.1007/s12042-018-9199-x
Bertini, L., Cozzolino, F., Proietti, S., et al., What antarctic plants can tell us about climate changes: temperature as a driver for metabolic reprogramming, Biomolecules, 2021, vol. 11, no. 8, art. ID 1094. https://doi.org/10.3390/biom11081094
Binenbaum, J., Weinstain, R., and Shani, E., Gibberellin localization and transport in plants, Trends Plant Sci., 2018, vol. 23, no. 5, pp. 410–421. https://doi.org/10.1016/j.tplants.2018.02.005
Bublyk, O.M., Andreev, I.O., and Kunakh, V.A., In silico identification and analysis of stress-inducible DREB2 transcription factors genes in Deschampsia antarctica Desv., in Factors in Experimental Evolution of Organisms, 2016, vol. 19, pp. 202–207. (in Ukrainian)
Camacho, C., Coulouris, G., Avagyan, V., et al., BLAST+: architecture and applications, BMC Bioinf., 2009, vol. 10, art. ID 421. https://doi.org/10.1186/1471-2105-10-421
Dubois, M., Van den Broeck, L., and Inzé, D., The pivotal role of ethylene in plant growth, Trends Plant Sci., 2018, vol. 23, no. 4, pp. 311–323. https://doi.org/10.1016/j.tplants.2018.01.003
Edgar, R.C., MUSCLE: a multiple sequence alignment method with reduced time and space complexity, BMC Bioinf., 2004, vol. 5, art. ID 113. https://doi.org/10.1186/1471-2105-5-113
Egawa, C., Kobayashi, F., Ishibashi, M., et al., Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat, Genes Genet. Syst., 2006, vol. 81, no. 2, pp. 77–91. https://doi.org/10.1266/ggs.81.77
Emenecker, R.J. and Strader, L.C., Auxin-abscisic acid interactions in plant growth and development, Biomolecules, 2020, vol. 10, no. 2, art. ID 281. https://doi.org/10.3390/biom10020281
Erpen, L., Devi, H.S., Grosser, J.W., et al., Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants, Plant Cell, Tiss. Organ Cult., 2018, vol. 132, pp. 1–25. https://doi.org/10.1007/s11240-017-1320-6
Feng, K., Hou, X.-L., Xing, G.-M., et al., Advances in AP2/ERF super-family transcription factors in plant, Crit. Rev. Biotechnol., 2020, vol. 40, no. 6, pp. 750–776. https://doi.org/10.1080/07388551.2020.1768509
Filiz, E. and Tombuloğlu, H., In silico analysis of DREB transcription factor genes and proteins in grasses, Appl. Biochem. Biotechnol., 2014, vol. 174, pp. 1272–1285. https://doi.org/10.1007/s12010-014-1093-x
Herath, V., Small family, big impact: In silico analysis of DREB2 transcription factor family in rice, Comput. Biol. Chem., 2016, vol. 65, pp. 128–139. https://doi.org/10.1016/j.compbiolchem.2016.10.012
Jung, W.J. and Seo, Y.W., Identification of novel C-repeat binding factor (CBF) genes in rye (Secale cereale L.) and expression studies, Gene, 2019, vol. 684, pp. 82–94. https://doi.org/10.1016/j.gene.2018.10.055
Kim, H.-J., Kim, Y.-K., Park, J.-Y., and Kim, J., Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana, Plant J., 2002, vol. 29, no. 6, pp. 693–704. https://doi.org/10.1046/j.1365-313X.2002.01249.x
Kovalchuk, N., Jia, W., Eini, O., et al., Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters, Plant Biotechnol. J., 2013, vol. 11, no. 6, pp. 659–670. https://doi.org/10.1111/pbi.12056
Kumar, S., Stecher, G., Li, M., et al., MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms, Mol. Biol. Evol., 2018, vol. 35, no. 6, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096
Lee, J., Kang, Y., Shin, S.C., et al., Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia аntarctica Desv., PLoS One, 2014, vol. 9, no. 6, art. ID e101100. https://doi.org/10.1371/journal.pone.0092501
Lescot, M., Déhais, P., Thijs, G., et al., PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences, Nucl. Acids Res., 2002, vol. 30, no. 1, pp. 325–327. https://doi.org/10.1093/nar/30.1.325
Li, C., Yue, J., Wu, X., et al., An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress, J. Exp. Bot., vol. 65, no. 18, pp. 5415–5427. https://doi.org/10.1093/jxb/eru302
Matsukura, S., Mizoi, J., Yoshida, T., et al., Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes, Mol. Genet. Genomics, 2010, vol. 283, pp. 185–196. https://doi.org/10.1007/s00438-009-0506-y
Mohamed, H.I., El-Shazly, H.H., and Badr, A., Role of salicylic acid in biotic and abiotic stress tolerance in plants, in Plant Phenolics in Sustainable Agriculture, Lone, R., Shuab, R., and Kamili, A., Eds., Singapore: Springer-Verlag, 2020, pp. 533–554. https://doi.org/10.1007/978-981-15-4890-1_23
Book
Nakashima, K., Yusuke, I., and Yamaguchi-Shinozaki, K., Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses, Plant Physiol., 2009, vol. 149, no. 1, pp. 88–95. https://doi.org/10.1104/pp.108.129791
Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987. https://doi.org/10.7312/nei-92038
Book
Neji, M., Geuna, F., Gandour, M., et al., Patterns of morpho-phenological and genetic variation of Brachypodium distachyon (L.) P.Beauv. complex in Tunisia, Genet. Resour. Crop Evol., 2022, vol. 69, pp. 577–586 doi.org/https://doi.org/10.1007/s10722-021-01242-0
Novillo, F., Alonso, J.M., Ecker, J.R., and Salinas, J., CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 11, pp. 3985–3990. https://doi.org/10.1073/pnas.0303029101
Ozheredova, I.P., Parnikoza, I.Yu., Poronnik, O.O., et al., Mechanisms of antarctic vascular plant adaptation to abiotic environmental factors, Cytol. Genet., 2015, vol. 49, no. 2, pp. 139–145. https://doi.org/10.3103/S0095452715020085
Pardo, J. and VanBuren, R., Evolutionary innovations driving abiotic stress tolerance in C4 grasses and cereals, Plant Cell, 2021, vol. 33, no. 11, pp. 3391–3401.https://doi.org/10.1093/plcell/koab205
Parnikoza, I., Kozeretska, I., and Kunakh, V., Vascular plants of the Maritime Antarctic: origin and adaptation, Am. J. Plant Sci., 2011, vol. 2, no. 3, pp. 381–395. https://doi.org/10.4236/ajps.2011.23044
Per, T.S., Khan, M.I.R., Anjum, N.A., et al., Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters, Environ. Exp. Bot., 2018, vol. 145, pp. 104–120. https://doi.org/10.1016/j.envexpbot.2017.11.004
Qin, F., Kakimoto, M., Sakuma, Y., et al., Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L., Plant J., 2007, vol. 50, no. 1, pp. 54–69. https://doi.org/10.1111/j.1365-313X.2007.03034.x
Roelofs, D., Morgan, J., and Sturzenbaum, S., The significance of genome-wide transcriptional regulation in the evolution of stress tolerance, Evol. Ecol., 2010, vol. 24, pp. 527–539. https://doi.org/10.1007/s10682-009-9345-x
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., et al., DnaSP 6: DNA sequence polymorphism analysis of large data sets, Mol. Biol. Evol., 2017, vol. 34, no. 12, pp. 3299–3302. https://doi.org/10.1093/molbev/msx248
Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, no. 4, pp. 406–425.
Schubert, M., Grønvold, L., Sandve, S.R., et al., Evolution of cold acclimation and its role in niche transition in the temperate grass subfamily Pooideae, Plant Physiol., 2019, vol. 180, no. 1, pp. 404–419. https://doi.org/10.1104/pp.18.01448
Singh, K. and Chandra, A., DREBs-potential transcription factors involve in combating abiotic stress tolerance in plants, Biologia, 2021, vol. 76, pp. 3043–3055. https://doi.org/10.1007/s11756-021-00840-8
Tamura, K., Nei, M., and Kumar, S., Prospects for inferring very large phylogenies by using the neighbor-joining method, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 30, pp. 11030–11035. https://doi.org/10.1073/pnas.0404206101
Tavakol, E., Sardaro, M.L.S., Shariati, V., et al., Isolation, promoter analysis and expression profile of Dreb2 in response to drought stress in wheat ancestors, Gene, 2014, vol. 549, no. 1, pp. 24–32. https://doi.org/10.1016/j.gene.2014.07.020
VanWallendael, A., Soltani, A., Emery, N.C., et al., A molecular view of plant local adaptation: Incorporating stress-response networks, Annu. Rev. Plant Biol., 2019, vol. 70, pp. 559–583. https://doi.org/10.1146/annurev-arplant-050718-100114
Walther, D., Brunnemann, R., and Selbig, J., The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana, PLoS Genet., 2007, vol. 3, no. 2, art. ID e11. https://doi.org/10.1371/journal.pgen.0030011
Wang, J., Song, L., Gong, X., Xu, J., and Li, M., Functions of jasmonic acid in plant regulation and response to abiotic stress, Int. J. Mol. Sci., 2020, vol. 21, no. 4, art. ID 1446. https://doi.org/10.3390/ijms21041446
Xiaxia, Y., Wenjin, Zh., Yu, Zh., et al., The roles of methyl jasmonate to stress in plants, Funct. Plant Biol., 2018, vol. 46, no. 3, pp. 197–212. https://doi.org/10.1071/FP18106
Xue, G.P. and Loveridge, C.W., HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element, Plant J., 2004, vol. 37, no. 3, pp. 326–339. https://doi.org/10.1046/j.1365-313X.2003.01963.x
Yamaguchi-Shinozaki, K., and Shinozaki, K., Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters, Trends Plant Sci., 2005, vol. 10, no. 2, pp. 88–94. https://doi.org/10.1016/j.tplants.2004.12.012
Yue, C., Cao, H., Lin, H., et al., Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments, Planta, 2019, vol. 250, pp. 281–298. https://doi.org/10.1007/s00425-019-03171-w
Zhang, N., McHale, L.K., and Finer, J.J., Changes to the core and flanking sequences of G-box elements lead to increases and decreases in gene expression in both native and synthetic soybean promoters, Plant Biotechnol. J., 2019, vol. 17, no. 4, pp. 724–735. https://doi.org/10.1111/pbi.13010
Zhang, Y. and Li, X., Salicylic acid: biosynthesis, perception, and contributions to plant immunity, Curr. Opin. Plant Biol., 2019, vol. 50, pp. 29–36. https://doi.org/10.1016/j.pbi.2019.02.004