Пшенично-житні транслокації з участю плеча 1RS є поширеними інтрогресіями серед комерційних сортів пшениці м’якої: 1BL.1RS від жита Petkus (як у сорту Кавказ) та 1AL.1RS від жита Insave (як у Amigo). Генотипи з рекомбінантним плечем 1RS у складі транслокації можуть нести нові поєднання генів стійкості на хромосомній ділянці, що фланкується локусами Sec-1 (Gli-R1) та Sec-N, розміщеному дистально від Sec-1 на відстані 10–20 сМ. Метою даної роботи було дослідження частоти генотипів з рекомбінантним плечем 1RS у складі пшенично-житніх транслокацій у гібридних популяціях пшениці покоління F5 від схрещення носіїв транслокацій 1BL.1RS і 1AL.1RS. Матеріалом дослідження слугували вибірки зерен F5 з гібридних популяцій Миронівська 67 (М67) × Колумбія, Колумбія × М67, Б-16 × Смуглянка та Смуглянка × Б-16. Сорт М67 і лінія Б-16 – носії 1BL.1RS як у сорту Кавказ; сорти Смуглянка і Колумбія – носії 1AL.1RS як у сорту Amigo. Для ідентифікації присутності транслокацій з участю 1RS та їх положення (на 1AL чи 1BL) використовували електрофорез спирторозчинних білків зерна та ідентифікацію алелів локусів Gli-A1/Gli-R1, Gli-B1/Gli-R1. За допомогою SDS-електрофорезу ідентифікували алелі за локусом Sec-N. Наявність продуктів рекомбінації між плечами 1RS визначали за зміною хромосомного положення відповідного алеля локусів Gli-R1 (Sec-1) та Sec-N. У гібридних популяціях F5 серед шести теоретично можливих варіантів генотипів з рекомбінантним плечем 1RS за секаліновими локусами виявлено п᾿ять. Сумарна частота носіїв одночасно двох транслокацій становила від 3,3 до 18,0 %, а сумарна частота генотипів з одним ідентифікованим рекомбінантним плечем 1RS – від 5,7 до 30,5 %. Найбільшу частоту генотипів з рекомбінантним плечем 1RS виявлено в популяції F5 М67 × Колумбія.
Ключові слова: Triticum aestivum, 1BL.1RS, 1AL.1RS, секалін, гліадин, електрофорез білків
Повний текст та додаткові матеріали
Цитована література
Bhattacharya, S., Deadly new wheat disease threatens Europe’s crops, Nature, 2017, vol. 542, pp. 145–146. https://doi.org/10.1038/nature.2017.21424
Graybosch, R., Bai, G., Amand, P.S., et al., Persistence of rye (Secale cereale L.) chromosome arm 1RS in wheat (Triticum aestivum L.) breeding programs of the Great Plains of North America, Genet. Resour. Crop Evol., 2019, vol. 66, pp. 941–950. https://doi.org/10.1007/s10722-019-00742-4
Hsam, S.L.K., Mohler, V., Hartl, L., et al., Mapping of powdery mildew and leaf rust resistance genes on the wheat-rye translocated chromosome T1BL·1RS using molecular and biochemical markers, Plant Breed., 2000, vol. 119, no. 1, pp. 87–89. https://doi.org/10.1046/j.1439-0523.2000.00444.x
Kozub, N.A., Sozinov, I.A., Sobko, T.A., et al., Variation at storage protein loci in winter common wheat cultivars of the Central Forest-Steppe of Ukraine, Cytol. Genet., 2009, vol. 43, no. 1, pp. 55–62. https://doi.org/10.3103/S0095452717020050
Kozub, N.A., Motsnyi, I.I., Sozinov, I.A., et al., Mapping a new secalin locus on the rye 1RS arm, Cytol. Genet., 2014, vol. 48, no. 4, pp. 203–207.
Kozub, N., Sozinov, I., Karelov, A., et al., Studying recombination between the 1RS arms from the rye Petkus and Insave involved in the 1BL.1RS and 1AL.1RS translocations using storage protein loci as genetic markers, Cytol. Genet., 2018, vol. 52, no. 6, pp. 440–447. https://doi.org/10.3103/S0095452718060063
Kozub, N.O., Sozinov, I.O., Chaika, V.M., et al., Changes in allele frequencies at storage proteins of winter common wheat under climate change, Cytol. Genet., 2020, vol. 54, pp. 305–317. https://doi.org/10.3103/S0095452720040076
Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, no. 5259, pp. 680–685. https://doi.org/10.1038/227680a0
Li, G., Wang, L., Yang, J., et al., A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes, Nat. Genet., 2021, vol. 53, no. 4, pp. 574–584. https://doi.org/10.1038/s41588-021-00808-z
Liu, S., Rudd, J.C., Bai, G., et al., Molecular markers linked to important genes in hard winter wheat, Crop Sci., 2014, vol. 54, pp. 1304–1321. https://doi.org/10.2135/cropsci2013.08.0564
Lukashewski, A.J., Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination, Crop Sci., 2000, vol. 40, no. 1, pp. 216–225. https://doi.org/10.2135/cropsci2000.401216x
Mago, R., Zhang, P., Vautrin, S., et al., Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines, Theor. Appl. Genet., 2002, vol. 104, no. 17, pp. 1317–1324. https://doi.org/10.1007/s00122-002-0879-3
Mago, R., Miah, H., Lawrence, G.J., et al., High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1, Theor. Appl. Genet., 2005, vol. 112, no. 1, pp. 41–50. https://doi.org/10.1007/s00122-005-0098-9
Mago, R., Zhang, P., Vautrin, S., et al., The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus, Nat. Plants, 2015, vol. 1, art. ID 15186. https://doi.org/10.1038/nplants.2015.186
Mater, Y., Baenziger, S., Gill, K., et al., Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from ‘Amigo’ and ‘Kavkaz’ wheat-rye translocations on chromosome 1RS.1AL, Genome, 2004, vol. 47, no. 2, pp. 292–298. https://doi.org/10.1139/g03-101
McIntosh, R.A., Catalogue of Gene Symbols. Gene Catalogue, 2013. http:www.shigen.nig.ac.jp/wheat/komugi/ genes/download.jspMacGene.
Metakovsky, E., Melnik, V., Rodriguez-Quijano, M., et al., A catalog of gliadin alleles: Polymorphism of 20th-century common wheat germplasm, Crop J., 2018, vol. 6, no. 6, pp. 628–641. https://doi.org/10.1016/j.cj.2018.02.003
Olivera Firpo, P.D., Newcomb, M., Flath, K., et al., Characterization of Puccinia graminis f. sp. tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013, Plant Pathol., 2017, vol. 66, no. 8, pp. 1258–1266.
Olivera, P.D., Sikharulidze, Z., Dumbadze, R., et al., Presence of a sexual population of Puccinia graminis f. sp. tritici in Georgia provides a hotspot for genotypic and phenotypic diversity, Phytopathology, 2019, vol. 109, no. 12, pp. 2152–2160. https://doi.org/10.1094/PHYTO-06-19-0186-R
Olivera, P.D., Villegas, D., Cantero-Martinez, C., et al., A unique race of the wheat stem rust pathogen with virulence on Sr31 identified in Spain and reaction of wheat and durum cultivars to this race, Plant Pathol., 2022, vol. 71, no. 4, pp. 873–889. https://doi.org/10.1111/PPA.13530
Patpour, M., Justesen, A.F., Tecle, A.W., et al., First report of race TTRTF of wheat stem rust (Puccinia graminis f. sp. tritici) in Eritrea, Plant Dis., vol. 104, no. 3, art. ID 973. https://doi.org/10.1094/PDIS-10-19-2133-PDN
Pretorius, Z.A., Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici, Plant Dis., 2000, vol. 84, no. 2, art. ID 203. https://doi.org/10.1094/PDIS.2000.84.2.203B
Purnhauser, L., Bona, L., and Lang, L., Occurrence of 1BL.1RS wheat-rye chromosome translocation and of Sr36/Pm6 resistance gene cluster in wheat cultivars registered in Hungary, Euphytica, 2011, vol. 179, pp. 287–295. https://doi.org/10.1007/s10681-010-0312-y
Rabinovich, S.V., Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L., Euphytica, 1998, vol. 100, nos. 1–3, pp. 323–340. https://doi.org/10.1023/A:1018361819215
Rogowsky, P.M., Guidet, F.L., Langridge, P., et al., Isolation and characterization of wheat-rye recombinants involving chromosome arm 1DS of wheat, Theor. Appl. Genet., 1991, vol. 82, no. 5, pp. 537–544.https://doi.org/10.1007/BF00226788
Ru, Z., Juhasz, A., Li, D., et al., 1RS.1BL molecular resolution provides novel contributions to wheat improvement, bioRxiv, 2020. https://doi.org/10.1101/2020.09.14.295733
Sasek, A. and Bartos, P., Gliadinova spectra odrud psenice s 1B/1R transolkaci nebo sustitui, Sb. UVTIZ, Genet. Slechteni, 1980, vol. 16, no. 4, pp. 243–251.
Schlegel, R., Current list of wheats with rye and alien introgression, 2016, Version 05-16, pp. 1–18. http://www.rye-gene-map.de/rye-introgression.
Sharma, S., Bhat, P.R., Ehdaie, B., et al., Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat, Theor. Appl. Genet., 2009, vol. 119, no. 5, pp. 783–793. https://doi.org/10.1007/s00122-009-1088-0
Singh, N.K., Shepherd, K.W., and McIntosh, R.A., Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ω-secalins on the short arm of rye chromosome 1R, Theor. Appl. Genet., 1990, vol. 80, no. 5, pp. 609–616. https://doi.org/10.1007/BF00224219
Singh, R.P., Hodson, D.P., Jin, Y., et al., Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control, Phytopathology, 2015, vol. 105, no. 7, pp. 872–884. https://doi.org/10.1094/PHYTO-01-15-0030-FI
Singh, S.P., Hurni, S., Ruinelli, M., et al., Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity, Plant Mol. Biol., 2018, vol. 98, pp. 249–260. https://doi.org/10.1007/s11103-018-0780-3
Sozinov, A.A. and Poperelya, F.A., Gliadin electrophoresis as a method of wheat identification of wheats in which chromosome 1B is completely or partially replaced by rye chromosome 1R, Dokl. VASKhNIL, 1977, vol. 2, pp. 2–4.
Tabibzadeh, N., Karimzadeh, G., and Naghavi, M.R., Distribution of 1AL.1RS and 1BL.1RS wheat-rye translocations in Iranian wheat, using PCR based markers and SDS-PAGE, Cereal Res. Commun., 2013, vol. 41, pp. 458–467. https://doi.org/1556/CRC.2013.0023
Tesfaye, T., Chala, A., Shikur, E., et al., First report of TTRTF race of wheat stem rust, Puccinia graminis f. sp. tritici, in Ethiopia, Plant Dis., 2020, vol. 104, pp. 293–293. https://doi.org/10.1094/PDIS-07-19-1390-PDN
Zhang, L., Liu, D., Guo, X., et al., Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers, BMC Genet., 2011, vol. 12, art. ID 42. https://doi.org/10.1186/1471-2156-12-42