РЕЗЮМЕ. Стеблова іржа, викликана Puccinia graminis f. sp. tritici, – це шкідливе захворювання пшениці, поширене у всьому світі та впродовж багатьох років контрольоване геном резистентності Sr31 до вірулентного штаму; Ug99 виник у 1999 р. Новий патотип загрожував глобальному виробництву пшениці і згодом був виявлений у таких провінціях Ірану, як Хамедан і Лорестан. Боротьба з цим захворюванням вимагає знаходження нових джерел резистентності до раси Ug99 і його варіантів. Дев’яносто п’ять генотипів іранської пшениці було проаналізовано на наявність генів резистентності до стеблової іржі – Sr2, Sr22, Sr24, Sr25 та Sr31 за використання декількох маркерів CAPS, STS і SSR. Зерно рослин з перевіреними генотипами і сорту Тетчер, що слугувало в якості негативного контролю, і п’яти ізоліній – в якості позитивного контролю, посіяли у тепличні посудини. Після екстракції ДНК провели полімеразноланцюгову реакцію (ПЛР) за використання праймерів для відповідних маркерів. Маркер Iag95 продемонстрував наявність Sr31 у 10 генотипах. Дев’ять генотипів з виявленою Gbасоційованою смугою, були носіями Sr25. J09, маркер, пов’язаний з Sr24, виявив цей ген лише у двох генотипах. Жоден генотип не продемонстрував смуги щодо маркерів, пов’язаних з генами Sr2 або Sr22. Комбіновану присутність Sr24 і Sr31 було ідентифіковано у шести генотипах. Наразі ні Ug99, ні його варіанти не мають вірулентності щодо Sr2, Sr22 і Sr25, тому припускаємо, що їх можна перенести від донорів до ліній, придатних для комерційного використання.
Ключові слова: Molecular Markers; Resistance Genes; Stem Rust; Wheat
Повний текст та додаткові матеріали
Цитована література
1. Afshari, F., Genetic pathogenicity of the disease caused stem rust (Puccinia graminis f. sp. tritici) and the response of wheat genotypes to the disease, Iran. J. Plant Prot. Sci., 2012, vol. 43, pp. 357–365.
2. Anderson, J.A., Plant genomics and its impact on wheat breeding. In Plant Molecular Breeding. 2003, pp. 184–215.
3. Bariana, H.S., Brown, G.N., Bansal, U.K., Miah, H., Standen, G.E., and Lu, M., Breeding triple rust resistant wheat cultivars for Australia using conventional and marker-assisted selection technologies, Aust. J. Agric. Res., 2007. https://doi.org/10.1071/AR07124
4. Bashir, S., Studies on molecular determinants of stem rust in wheat (Triticum aestivum), Doctoral Dissertation, Faisalabad: Government College University, 2019.
5. Bashir, S., Bukhari, S.A., and Mahmood-ur-Rahman, M.A., Homology modeling, structure and active site prediction of stem rust resistant gene Sr22 in wheat cultivars, Pure Appl. Biol., 2019. https://doi.org/10.19045/bspab.2018.700216
6. Bhavani, S., Singh, R.P., Argillier, O., et al., Mapping durable adult plant stem rust resistance to the race Ug99 group in six CIMMYT wheats to Ug99 group of races, in Borlaug Global Rust Initiative 2011 Technical Workshop, 2011, pp. 43–53.
7. Brown, G.N., The inheritance and expression of leaf chlorosis associated with gene Sr2 for adult plant resistance to wheat stem rust, Euphytica, 1997. https://doi.org/10.1023/A:1002985326256
8. Bukhari, S.A., Mahmood-Ur-Rahman, Shamshari, W.A., and Bashir, S., Homology modeling, structure and active site prediction of stem rust resistant protein in wheat, Mol. Biol., 2018, vol. 7, pp. 411–414.
9. Chelkowski, J., Golka, L., and Stepien, L., Application of STS markers for leaf rust resistance genes in near isogenic lines of spring wheat cv. Thatcher, J. Appl. Genet., 2003, vol. 44, pp. 323–338.
10. Dadkhodaie, N.A., Singh, D., and Park, R.F., Characterisation of resistance to leaf rust in an international bread wheat nursery, J. Plant Pathol., 2011. https://doi.org/10.5554/jpp.v93i3.3645
11. Dhaliwal, A.S. and MacRitchie, F.J., Contributions of protein fractions to dough handling properties of wheat–rye translocation cultivars, J. Cereal Sci., 1990. https://doi.org/10.1016/S0733-5210(09)80093-3
12. Ellis, J.G., Lagudah, E., Spielmeyer, W., abd Dodds, P., The past, present and future of breeding rust resistant wheat, Front. Plant Sci., 2014. https://doi.org/10.3389/fpls.2014.00641
13. Gerechter-Amitai, Z.K., Wahl, I., Vardi, A., and Zohary, D., Transfer of stem rust seedling resistance from wild diploid einkorn to tetraploid durum wheat by means of a triploid hybrid bridge, Euphytica, 1971, vol. 20, pp. 281–285.
14. Ghazvini, H. and Sarhangi, M., Study on presence of stem rust resistance gene Sr2 in the Iranian varieties and elite wheat lines by using molecular markers, Crop Biotech., 2016, vol. 14, pp. 27–42.
15. Gultyaeva, E.I., Kanyuka, I.A., Alpateva, N.V., et al., Molecular approaches in identifying leaf rust resistance genes in Russian wheat varieties, Russ. Agric. Sci., 2009. https://doi.org/10.3103/S1068367409050085
16. Hale, I.L., Mamuya, I., and Singh, D., Sr37-virulent races (TTKSK, TTKST, and TTTSK) of the wheat stem rust pathogen Puccinia graminis f. sp. tritici are present in Tanzania, Plant Dis., 2013. https://doi.org/10.1094/PDIS-06-12-0604-PDN
17. Harder, D.E. and Dunsmore, K.M., Incidence and virulence of Puccinia graminis f. sp. tritici on wheat and barley in Canada, Can. J. Plant Pathol., https://doi.org/10.1080/07060669109500922
18. Hare, R.A. and McIntosh, R.A., Genetic and cytogenetic studies of durable adult-plant resistances in ‘Hope’ and related cultivars to wheat rusts, Z. Pflanzenzuchtung, 1979, vol. 83, pp. 350–367.
19. Jin, Y., Singh, R.P., Ward, R.W., et al., Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici, Plant Dis., 2007. https://doi.org/10.1094/PDIS-91-9-1096
20. Jin, Y., Szabo, L.J., Pretorius, Z.A., and Singh, R.P., Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici, Plant Dis., 2008. https://doi.org/10.1094/PDIS-92-6-0923
21. Khan, R.R., Bariana, H.S., Dholakia, B.B., Naik, S.V., et al., Molecular mapping of stem and leaf rust resistance in wheat, Theor. Appl. Genet., 2005. https://doi.org/10.1007/s00122-005-0005-4
22. Khlestkina, E.K., Pestsova, E.G., Salina, E., Röder, M.S., et al., Genetic mapping and tagging of wheat genes using RAPD, STS, and SSR markers, Cell Mol. Biol. Lett., 2002, vol. 7, pp. 795–802.
23. Knott, D.R., Mutation of a gene for yellow pigment linked to Lrl9 in wheat, Can. J. Genet. Cytol., 1980, vol. 22, pp. 651–654.
24. Korzun, V., Hackauf, B., Wortmann, H., Wilde, P., and Wehling, P., Development of conserved ortholog set markers linked to the restorer gene Rfpl in rye, Mol. Breed., 2012. https://doi.org/10.1007/s11032-012-9736-5
25. Lagudah, E.S., Molecular genetics of race non-specific rust resistance in wheat, Euphytwa, 2011. https://doi.org/10.1007/s10681-010-0336-3
26. Lelley, T., Eder, C., and Grausgruber, H., Influence of 1BL.1RS wheat–rye chromosome translocation on genotype by environment interaction, J. Cereal Sci., 2004. https://doi.org/10.1016/j.jcs.2003.11.003
27. Leonard, K.J. and Szabo, L.J., Stem rust of small grains and grasses caused by Puccinia graminis, Mol. Plant Pathol., 2005. https://doi.org/10.1111/j.1364-3703.2005.00273.x
28. Li, H.J. and Wang, X.M., Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat, J. Genet. Genomics, 2009. https://doi.org/10.1016/S1673-8527(08)60147-2
29. Li, H.J., Conner, R.L., and Murray, T.D., Resistance to soil-borne diseases of wheat: Contributions from the wheatgrasses Thinopyrum intermedium and Th. ponticum, Can. J. Plant Sci., https://doi.org/10.4141/CJPS07002
30. Lukaszewski, A.J., Manipulation of the 1RS.1BL translocation in wheat by induced homeologous recombination, Crop Sci., 2000. https://doi.org/10.2135/cropsci2000.401216x
31. Mago, R., Spielmeyer, W., Lawrence, G.J., and Lagudah, E.S., Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat–rye translocation lines, Theor. Appl. Genet., 2002. https://doi.org/10.1007/s00122-002-0879-3
32. Mago, R., Miah, H., Lawrence, G.J., Wellings, C.R., et al., High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1, Theor. Appl. Genet., 2005. https://doi.org/10.1007/s00122-005-0098-9
33. Mago, R., Brown-Guedira, G., Dreisigacker, S., Breen, J., et al., An accurate DNA marker assay for stem rust resistance gene, Theor. Appl. Genet., 2011. https://doi.org/10.1007/s00122-010-1482-7
34. Malav, A.K., Kuideep, I., and Chandrawat, K.S., Gene pyramiding: an overview, Int. J. Curr. Res. Biosci. Plant Biol., 2016. https://doi.org/10.20546/ijcrbp.2016.307.004
35. Martin, D.L. and Stewart, B.G., Dough stickiness in rye-derived wheat cultivars, Euphytica, 1990. https://doi.org/10.1007/BF00022895
36. McFadden, E.S.A., Successful transfer of emmer characters to vulgare wheat, J. Am. Soc. Agron., 1930, vol. 22, pp. 1020–1034.
37. McIntosh, R.A., Park, R.F., and Wellings, C.R., Wheat rusts, in An Atlas of Resistance Genes, McIntosh, R.A., Ed., Melbourne, Australia: CSIRO Publications, 1995.
38. McIntosh, R.A., Dubcovsky, J., Rogers, W.J., et al., Catalogue of gene symbols for wheat, in 12th International Wheat Genetics Symposium, Yokohama, Japan, 2018.
39. Mohammadi, M., Torkamaneh, D., and Patpour, M., Seedling stage resistance of Iranian bread wheat germplasm to race Ug99 of Puccmia grammis f. sp. tritici, Plant Dis., 2013. https://doi.org/10.1094/PDIS-02-12-0138-RE
40. Najafian, G., Amin, H., Afshari, F., et al., Sivand, a new bread wheat cultivar, resistant to stem rust (race Ug99) with good bread making quality for cultivation under irrigated conditions of temperate regions of Iran, J. Seed Plant Improv., 2010, vol. 26, pp. 285–288.
41. Nazari, K., Mafi, M., Yahyaoui, A., Singh, R.P., and Park, R.F., Detection of wheat stem rust (Puccinia graminis f. sp. tritici) race TTKSK (Ug99) in Iran, Plant Dis., 2009. https://doi.org/10.1094/PDIS-93-3-0317B
42. Nisha, R., Sivasamy, M., and Gajalakshmi, K., Pyramiding of stem rust resistance genes to develop durable and multiple disease resistant wheat varieties through marker aided selection, Int. J. Ext. Res., 2015, vol. 5, pp. 1–9.
43. Njau, P.N., Jin, Y., Huerta-Espino, J., Keller, B., and Singh, R.P., Identification and evaluation of sources of resistance to stem rust race Ug99 in wheat, Plant Dis., 2010. https://doi.org/10.1094/PDIS-94-4-0413
44. Oliver, R.P., A reassessment of the risk of rust fungi developing resistance to fungicides, Pest Manage. Sci., 2014. https://doi.org/10.1002/ps.3767
45. Olson, E.L., Brown-Guedira, G., Marshall, D.S., Jin, Y., et al., Genotyping of US wheat germplasm for presence of stem rust resistance genes, Crop Sci., 2010. https://doi.org/10.2135/cropsci2009.04.0218
46. Paull, J.G., Pallotta, M.A., Langridge, P., and The, T.T., RFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid species Triticum boeoticum, Theor. Appl. Genet., 1994. https://doi.org/10.1007/BF00224536
47. Periyannan, S.K., Bansal, U.K., Bariana, H.S., Pumphrey, M., and Lagudah, E.S., A robust molecular marker for the detection of shortened introgressed segment carrying the stem rust resistance gene Sr22 in common wheat, Theor. Appl. Genet., 2011. https://doi.org/10.1007/s00122-010-1417-3
48. Prasha, M., Bhardwaj, S.C., Jain, S.K., Sharma, Y.P., and Mishra, B., Gene deployment: Indian experience, in International Conference on Wheat Stem Rust Ug99 Threat to Food Security, NASC, 2008.
49. Pretorius, Z.A., Singh, R.P., Wagoire, W.W., and Payne, T.S., Detection of virulence to wheat stem rust resistance gene Sr31 in Puccmia grammis f. sp. tritici in Uganda, Plant Dis., 2002. https://doi.org/10.1094/PDIS.2000.84.2.203B
50. Prins, R., Groenewald, J.Z., Marais, G.F., Snape, J.W., and Koebner, R.M.D., AFLP and STS tagging of Lrl9, a gene conferring resistance to leaf rust in wheat, Theor. Appl. Genet., 2001. https://doi.org/10.1007/PL00002918
51. Purnhauser L, Bona, L., and Lang, L., Occurrence of 1BL.1RS wheat–rye chromosome translocation and of Sr36/Pm6 resistance gene cluster in wheat cultivars registered in Hungary, Euphytica, 2011. https://doi.org/10.1007/sl0681-010-0312-y
52. Rajaram, S., Mann, C.H., Ortiz-Ferrara, G., and Mujeeb-Kazi, A., Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheats, Wheat Genet Symp., 1983, pp. 613–621.
53. Roelfs, A.P., Singh, R.P., and Saari, E.E., Rust Diseases of Wheat: Concepts and Methods of Disease Management, CIMMYT, 1992.
54. Rosewarne, G., Bonnett, D., Rebetzke, G., Lonergan, P., and Larkin, P.J., The potential of Lrl9 and Bdv2 translocations to improve yield and disease resistance in the high rainfall wheat zones of Australia, Agronomy, 2015. https://doi.org/10.3390/agronomy5010055
55. Saghai-Maroof, M., Soliman, K.M., Jorgensen, R.A., and Allard, R.W., Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics, Proc. Natl. Acad. Sci. U. S. A., 1984. https://doi.org/10.1073/pnas.81.24.8014
56. Schachermayr, G.M., Messmer, M.M., Feuillet, C., Winzeler, H., et al., Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat, Theor. Appl. Genet., 1995. https://doi.org/10.1007/BF00222911
57. Sebesta, E.E. and Wood, E.A., Transfer of greenbug resistance from rye to wheat with X-rays, Agronomy, 1978, vol. 70, pp. 61–62.
58. Sedlacek, T., Marik, P., and Chrpova, J., Development of CAPS marker for identification of rym4 and rym5 alleles conferring resistance to the barley yellow mosaic virus complex in barley, Czech J. Genet. Plant Breed., 2010. https://doi.org/10.17221/7/2010-CJGPB
59. Sharma, R.K., Singh, P.K., Joshi, A.K., et al., Protecting South Asian wheat production from stem rust (Ug99) epidemic, J. Phytopathol., 2013. https://doi.org/10.1111/jph.12070
60. Sheen, S.J., Ebeltoft, D.C., and Smith, G.S., Association and inheritance of “Black Chaff and stem rust reactions in Conley wheat crosses 1, Crop Sci., 1968. https://doi.org/10.2135/cropsci1968.0011183X000800040025x
61. Sheikh, F.A., Razvi, S.M., and Malik, A.A., Role of wild relatives in imparting disease resistance to rusts of wheat, Int. J. Pure Appl. Biosci., 2017. https://doi.org/10.5958/2229-4473.2017.00009.X
62. Singh, R.P., Huerta-Espino, J., Rajaram, S., and Crossa, J., Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat, Crop Sci., 1998. https://doi.org/10.2135/cropsci1998.0011183X003800010005x
63. Singh, R.P., Huerta-Espino, J., Pfeiffer, W., and Figueroa-Lopez, P., Occurrence and impact of a new leaf rust race on durum wheat in northwestern Mexico, Plant Dis., 2004. https://doi.org/10.1094/PDIS.2004.88.7.703
64. Singh, R.P., Hodson, D.P., Jin, Y., Huerta-Espino, J., et al., Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen, Perspect. Agric., 2006, vol. 1, pp. 1–13.
65. Singh, K., Ghai, M., Garg, M., Chhuneja, P., et al., An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population, Theor. Appl. Genet., 2007. https://doi.org/10.1007/s00122-007-0543-z
66. Singh, R.P., Hodson, D.P., Huerta-Espino, J., Jin, Y., et al., Will stem rust destroy the world’s wheat crop?, Adv Agron., 2008. https://doi.org/10.1016/S0065-2113(08)00205-8
67. Singh, R.P., Hodson, D.P., Huerta-Espino, J., Jin, Y., et al., The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production, Annu. Rev. Phytopathol., 2011. https://doi.org/10.1146/annurev-phyto-072910-095423
68. Singh, R.P., Hodson, D.P., Jin, Y., et al., Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control, Phytopathology, 2015. https://doi.org/10.1094/PHYTO-01-15-0030-FI
69. Smith, E.L., Schlehuber, A.M., Young, H.C., and Edwards, L.H., Registration of agent wheat, Crop Sci., 1968, vol. 8, no. 4, pp. 511–512.
70. Sumíková, T. and Hanzalova, A., Multiplex PCR assay to detect rust resistance genes Lr26 and Lr37 in wheat, Czech J. Genet. Plant Breed., 2010. https://doi.org/10.17221/32/2010-CJGPB
71. The, T.T., Gupta, R.B., Dyck, P.L., Appels, R., Hohmann, U., and McIntosh, R.A., Characterization of stem rust resistant derivatives of wheat cultivar Amigo, Euphytica, 1992. https://doi.org/10.1007/BF00025256
72. Todorovska, E., Christov, N., Christova, P., and Vassilev, D., Biotic stress resistance in wheat-breeding and genomic selection implications, Biotechnology, 2009. https://doi.org/10.2478/V10133-009-0006-6
73. Watson, I.W. and Singh, D., The future of rust resistant wheat in Australia, J. Aust. Inst. Agric. Sci., 1952, vol. 28, pp. 190–197.
74. Yu, L.X., Liu, S., Anderson, J.A., Singh, R.P., Jin, Y., et al., Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines, Mol. Breed., 2010. https://doi.org/10.1007/s11032-010-9403-7
75. Yu, L.X., Chao, S., Singh, R.P., and Sorrells, M.E., Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring, PLoS One, 2017. https://doi.org/10.1371/journal.pone.0171963