В останні десятиліття селекція в свинарстві була спрямована на отримання тварин з високою інтенсивністю росту і збільшеним виходом м’яса в туші, в результаті чого проявилася тенденція до погіршення якісних характеристик свинини. Одним із шляхів вирішення цієї проблеми є розроблення генетичних маркерів якості м’яса свиней і застосування їх у селекційних програмах поряд з маркерами інших продуктивних ознак. У статті представлено результати аналізу асоціації генів IGF2 (SNP g.3072G > A), CTSD (SNP g.70G > A) і CTSF (SNP g.22G > C), локалізованих в QTL регіоні дистального кінця p-плеча хромосоми 2 з показниками якості м’яса і структури туші свиней української великої білої породи (УВБ). За зазначеними SNP всі гени характеризувалися високим рівнем поліморфізму (PIC = 0,343–0,371). Встановлено асоціацію CTSD (SNP g.70G > A) з вмістом внутрішньом’язового жиру (p = 0,02), вологи в м’ясі (p = 0,03) і його вологоутримуючою здатністю (p = 0,03). CTSD (SNP g.70G > A), також, чинив адитивний ефект на важливу селекціону ознаку – товщину хребтового жиру (р = 0,05), найбільш високою вона була у свиней гено-типу g.70GG. Знайдено зв’язок CTSF (SNP g.22G > C) з вмістом вологи в м’ясі (р = 0,01) і асоціацію IGF2 (SNP g.3072G > A) з втратою вологи при його термічній обробці (р = 0,01). Поліморфізми досліджених генів можуть бути використані в якості генетичних маркерів в маркер-асоційованій селекції свиней української великої білої породи.
Ключові слова: Ukrainian Large White pig breed, SSC2, CTSF, CTSD, IGF2, SNP, meat quality, association analysis
Повний текст та додаткові матеріали
Цитована література
1. Balatsky, V., Oliinychenko, Y., Sarantseva, N., et al., Association of single nucleotide polymorphisms in leptin (LEP) and leptin receptor (LEPR) genes with backfat thickness and daily weight gain in Ukrainian Large White pigs, Livestock Sci., 2018, vol. 217, pp. 157–161. https://doi.org/10.1016/j.livsci.2018.09.015
2. Balatsky, V.M., Vovk, V.O., Buslyk, T.V., et al., The genetic-associated analysis of g. 22 G > C single-nucleotide polymorphism in F cathepsin gene of different pig breeds, Bull. Poltava State Agrar. Acad., 2018, vol. 4, pp. 137–141. https://doi.org/10.31210/visnyk2018. 04.20
3. Balatsky, V.N., Saienko, A.M., Pena, R.N., et al., Genetic diversity of pig breeds on ten production quantitative traits loci, Cytol. Genet., 2015, vol. 49, no. 5, pp. 299–307. https://doi.org/10.3103/S0095452715050023
4. Boccard, R., Buchter, L., Casteels, M., et al., Procedures for measuring meat quality characteristics in beef production experiments, Report of a Working Group in the Commission of the European Communities (CEC) Beef Production Research Programme, Li-vest Prod. Sci., 1981, vol. 8, pp. 385–397. https://doi.org/10.1016/0301-6226 (81)90061-0
5. Bohrer, B.M., Clark, D.L, Tavárez, M.A., et al., Effect of an insulin-like growth factor 2 single nucleotide polymorphism on fresh belly characteristics and bacon slicing yields of finishing pigs, Meat Sci., 2015, vol. 101, pp. 109–110. https://doi.org/10.1016/j.meatsci.2014.09.029
6. Burgos, S.C., Llambн, D.S., Hidalgo, G.J., et al., Selection markers in Pampa Rocha pigs: a comparison with autochthonous breeds of Spain and Portugal, J. MVZ Cordoba, 2019, vol. 24, no. 2, pp. 7198–7202. https://doi.org/10.21897/rmvz.1642
7. Clark, D.L., Bohrer, B.M., Tavárez, M.A., et al., Effects of the porcine igf2 intron 3-g3072a mutation on carcass cutability, meat quality, and bacon processing, J. Anim. Sci., 2014, vol. 92, no. 12, pp. 5778–5788. https://doi.org/10.2527/jas.2014-8283
8. Cobanovic, N., Stajkovic, S., Grkovic, N., et al., Effects of RYR1 gene mutation on the health, welfare, carcass and meat quality in slaughter pigs, IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 333. https://doi.org/10.1088/1755-1315/333/1/012051
9. Criado-Mesas, L., Ballester, M., Crespo-Piazuelo, D., et al., Analysis of porcine IGF2 gene expression in adipose tissue and its effect on fatty acid composition, PLoS One, 2019, vol. 14, no. 8, pp. e0220708. https://doi.org/10.1371/journal.pone0220708
10. Danley, R.L., New heat flux DSC measurement technique, Thermochim. Acta, 2002, vol. 395, nos. 1–2, pp. 201–208. https://doi.org/10.1016/S0040-6031(02)00212-5
11. Davoli, R., Schivazappa, C., Zambonelli, P., et al., Association study between single nucleotide polymorphisms in porcine genes and pork quality traits for fresh consumption and processing into Italian dry-cured ham, Meat Sci., 2016, vol. 126, pp. 73–81. https://doi.org/10.1016/j.meatsci.2016.11.01
12. Fontanesi, L., Speroni, C., Buttazzoni, L., et al., The insulin-like growth factor 2 (IGF2) gene intron3-g.3072G>A polymorphism is not the only Sus scrofa chromosome 2p mutation affecting meat production and carcass traits in pigs: evidence from the effects of a cathepsin D (CTSD) gene polymorphism, J. Anim. Sci., 2010, vol. 88, pp. 2235–2245. https://doi.org/10.2527/jas.2009-2560
13. Fontanesi, L., Scotti, E., Speroni, C., et al., A selective genotyping approach identifies single nucleotide polymorphisms in porcine chromosome 2 genes associated with production and carcass traits in Italian heavy pigs, Ital. J. Anim. Sci., 2011, vol. 10, no. 2, pp. 72–77. https://doi.org/10.4081/ijas.2011.e15
14. Fontanesi, L., Speroni, C., Buttazzoni, L., et al., Association between polymorphisms in cathepsin and cystatin genes with meat production and carcass traits in Italian Duroc pigs: confirmation of the effects of a cathepsin L (CTSL) gene marker, Mol. Biol. Rep., 2012, vol. 39, no. 1, pp. 109–115. https://doi.org/10.1007/s11033-011-0715-4
15. Grau, R. and Hamm, R., Über das Wasserbin-dungsvermgen des Sugetiermuskels. II. Mitteilung. Über die Bestimmung der Wasserbindung des Muskels, Zeitschrift Lebensmittel-Intersuchung Forschung, 1957, vol. 105, no. 6, pp. 446–460. https://doi.org/10.1007/BF011-26901
16. Hao, L.L., Yu, H., Zhang, Y., et al., Single nucleotide polymorphism analysis of exons 3 and 4 of IGF-1 gene in pigs, Genet. Mol. Res., 2011, vol. 10, pp. 1689–1695. https://doi.org/10.4238/vol10-3gmr1328
17. Official Methods of Analysis of the AOAC, 13th ed., Horwitz, W., Ed., The Association of Official Analytical Chemists, 1111 N. 19th St., Arlington, VA 22209, 1980. https://doi.org/10.1002/jps.2600700437
18. Hu, Zhi-L., Park, C.A., and Reecy, J.M., Building a livestock genetic and genomic information knowledge base through integrative developments of Animal QTLdb and CorrDB, Nucleic Acids Res., 2019, vol. 47 (D1), pp. D701–D710. https://doi.org/10.1093/nar/gky1084
19. Karpushkina, T.V., Kostyunina, O.V., Sizareva, E.I., et al., Productive traits of large white pigs depending on IGF2 and CTSD genotypes, Dostizh. Nauki Tekhn. APK, 2016, vol. 30, no. 6, pp. 82.
20. Kenchaiwong, W., Duangjinda, M., and Boonkum, W., Polymorphisms of candidate genes associated with feed efficiency and growth traits in commercial crossbred pigs, J. Sci. Technol., 2019, vol. 41, no. 5, pp. 1069–1075.
21. Kostyunina, O.V., Kramarenko, S.S., Svezhentseva, N.A., et al., The association of IGF2 with productive traits of pigs of large white breed in the aspect of sexual differentiation, Agric. Biol., 2015, vol. 50, no. 6, pp. 736–745. https://doi.org/10.15389/agrobiology.2015.6.736rus
22. Martínez-Montes, M., Fernández, A., Mucoz, M., et al., Using genome wide association studies to identify common QTL regions in three different genetic backgrounds based on Iberian pig breed, PLoS One, 2018, 2018, vol. 13, no. 3. e0190184. https://doi.org/10.1371/journal.pone.0190184
23. Nezer, C., Moreau, L., Brouwers, B., et al., An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs, Nat. Genet., 1999, vol. 21, pp. 155–156. https://doi.org/10.1038/593
24. Oczkowicz, M., Tyra, M., Walinowicz, K., et al., Known mutation (A3072G) in intron 3 of the IGF2 gene is associated with growth and carcass composition in Polish pig breeds, J. Appl. Genet., 2009, vol. 50, no. 3, pp. 257–259. https://doi.org/10.1007/BF03195681
25. Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel, population genetic software for teaching and research—an update, Bioinformatics, 2012, vol. 28, no. 19, pp. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
26. Pena, R.N., Ros-Freixedes, R., Tor, M., et al., Genetic marker discovery in complex traits: a field example on fat content and composition in pigs, Int. J. Mol. Sci., 2016, vol. 17, no. 12, p. 2100. https://doi.org/10.3390/ijms17122100
27. Piyrkowska, K.L., Ropka-Molik, K., Eckert, R., et al., The association between polymorphisms of three cathepsins and economically important traits in pigs raised in Poland, Livestock Sci., 2012, vol. 150, pp. 316–323. https://doi.org/10.1016/j.livsci.2012.09.022
28. Qiao, R., Gao, J., Zhang, Zh., et al., Genome-wide association analyses reveal significant loci and strong candidate genes for growth and fatness traits in two pig populations, Genet. Select. Evol., 2015, vol. 47, p. 17. https://doi.org/10.1186/s12711-015-0089-5
29. Ramos, A.M., Glenn, K.L., Serenius, T.V., et al., Genetic markers for the production of US country hams, J. Anim. Breed. Genet., 2008, vol. 128, pp. 248–257.https://doi.org/10.1111/j.1439-0388.2007.00710.x
30. Russo, V., Davoli, R., Nanni Costa, L., et al., Association of the CTSB, CTSF and CSTB genes with growth, carcass and meat quality traits in heavy pigs, Ital. J. Anim. Sci., 2003, vol. 2, no. 1, pp. 67–69. https://doi.org/10.4081/ijas.2003.11675917
31. Russo, V., Fontanesi, L., Davoli, R., et al., Linkage mapping of the porcine cathepsin F (CTSF) gene close to the QTL regions for meat and fat deposition traits on pig chromosome 2, Anim. Genet., 2004, vol. 35, pp. 155–157. https://doi.org/10.1111/j.1365-2052.2004.01105.x
32. Russo, V., Fontanesi, L., Scotti, E., et al., Single nucleotide polymorphisms in several porcine cathepsin genes are associated with growth, carcass, and production traits in Italian Large White pigs, J. Anim. Sci., 2008, vol. 86, pp. 3300–3314. https://doi.org/10.2527/jas.2008-0920
33. Simonetti, A., Rando, A., Di Gregorio, P., et al., Variability of the IGF2 locus in the Suino Nero Lucano pig population and its effects on meat quality, Anim. Prod. Sci., 2017, vol. 58, no. 11, pp. 1976–1982. https://doi.org/10.1071/AN17051
34. Tocci, A.M. and Mascheroni, R.H., Characteristics of differential scanning calorimetry determination of thermophysical properties of meats, Lebensmittel-Wissenschaft und-Technologie, 1998, vol. 31, no. 5, pp. 418–426. https://doi.org/10.1006/fstl.1998.0319
35. Untergasser, A., Nijveen, H., Rao, X., et al., Pri-mer3Plus, an enhanced web interface to Primer3, Nucleic Acids Res., 2007, vol. 35, no. 2, pp. W71–W74. https://doi.org/10.1093/nar/gkm306
36. Van Laere, A.S., Nguyen, M., Braunschweig, M., et al., A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig, Nature, 2003, vol. 425, no. 6960, pp. 832–836. https://doi.org/10.1038/nature02064
37. Zhang, C., Bruce, H., Yang, T., et al., Genome Wide Association Studies (GWAS) identify QTL on SSC2 and SSC17 affecting loin peak shear force in crossbred commercial pigs, PLoS One, 2016, vol. 11, no. 2. e0145082. https://doi.org/10.1371/journal.pone.0145082