Нітропрусид натрію є відомим донором оксиду азоту, який застосовують у рослинництві. Однак, питання використання нітропрусиду натрію для захисту овочевих культур від фітопатогенних бактерій висвітлено недостатньо. Цей огляд присвячено узагальненню даних про вплив нітропрусиду натрію на овочеві рослини за дії бактеріальних патогенів. Дані літератури свідчать про недостатню ефективність активного контролю фітопатогенних бактерій нітропрусидом натрію через його безпосередній вплив на бактеріальні клітини. Водночас, оксид азоту відіграє ключову роль в процесах росту і розвитку та захисних механізмах рослин. Нітропрусцид натрію характеризується здатністю до індукції системної стійкості в рослинах томатів, що супроводжується експресією ферментів і генів, пов’язаних із захистом, підвищеним накопиченням фенольних сполук, синтезом компонентів клітинної стінки, надсинтезом сигнальних молекул, фенолів, флавоноїдів, калози і молекул лігніну на ранніх етапах інвазії патогенів. На пізніших стадіях розвитку бакте-ріальної інфекції він впливає на перекисне окислення ліпідів, вміст проліну і хлорофілу в рослинах. Таким чином, нітропрусид натрію може бути перспективним агентом контролю бактеріальних хвороб, який діє як стимулятор специфічних реакцій стійкості рослин томатів.
Ключові слова: нітропрусид натрію, оксид азоту, активні форми кисню, системна індукована стійкість, бактеріальні хвороби, фітопатогенні бактерії, томати
Повний текст та додаткові матеріали
Цитована література
1. Antoniou, C., Filippou, P., Mylona, P., et al., Developmental stage- and concentration-specific sodium nitroprusside application results in nitrate reductase regulation and the modification of nitrate metabolism in leaves of Medicago truncatula plants, Plant Signal. Behav., 2013, vol. 8, no. 9. e25479. https://doi.org/10.4161/psb.25479
2. Arasimowicz, M., Floryszak-Wieczorek, F., Milczarek, G., and Jelonek, T., Nitric oxide, induced by wounding, mediates redox regulation in pelargonium leaves, Plant Biol., 2008, vol. 11, no. 5, pp. 650–663. https://doi.org/10.1111/j.1438-8677.2008.00164.x
3. Ashraf, M. and Harris, P., Potential biochemical indicators of salinity tolerance in plants, Plant Sci., 2004, vol. 166, pp. 3–16. https://doi.org/10.1016/j.plantsci.2003.10.024
4. Barnes, R.J., Bandi, R.R., Wong, W.S., et al., Optimal dosing regimen of nitric oxide donor compounds for the reduction of Pseudomonas aeruginosa biofilm and isolates from wastewater membranes, Biofouling, 2013, vol. 29, pp. 203–212. https://doi.org/10.1080/08927014.2012.760069
5. Baysal, I., Soylu, E.M., and Soylu, S., Induction of defence-related enzymes and resistance by the plant activator acibenzolar-S-methyl in tomato seedlings against bacterial canker caused by Clavibacter michiganensis ssp. michiganensis, Plant Pathol., 2003, vol. 52, pp. 747–753. https://doi.org/10.1111/j.1365-3059.2003.00936.x
6. Beligni, Mv., Fath, A., Bethke, P.C., et al., Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers, Plant Physiol., 2002, vol. 129, pp. 1642–1650. https://doi.org/10.1104/pp.002337
7. Bellincampi, D., Cervone, F., and Lionetti, V., Plant cell wall dynamics and wall-related susceptibility in plant–pathogen interactions, Front. Plant Sci., 2014, vol. 5, p. 228. https://doi.org/10.3389/fpls.2014.00228
8. Bhatia, P., Ashwath, N., Senaratna, T., and Midmore, D., Tissue culture studies of tomato (Lycopersicon esculentum), Plant Cell Tiss. Organ Cult., 2004, vol. 78, pp. 1–21. https://doi.org/10.1023/B:TICU.0000020430.08558.6e
9. Butsenko, L., Pasichnyk, L., Kolomiiets, Y., and Kalinichenko, A., The effect of pesticides on the tomato bacterial speck disease pathogen Pseudomonas syringae pv. tomato, Appl. Sci., 2020, vol. 10, no. 9, p. 3263. https://doi.org/10.3390/app10093263
10. Chua, S.L., Liu, Y., Yam, J.K., et al., Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles, Nat. Commun., 2014, vol. 5, pp. 1–12. https://doi.org/10.1038/ncomms5462
11. Correa-Aragunde, N., Graziano, M., Chevalier, C., and Lamattina, L., Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato, J. Exp. Bot., 2006, vol. 57, no. 3, pp. 581–588. https://doi.org/10.1093/jxb/erj045
12. Dmitriev, O.P., Kovbasenko, R.V., and Lapa, S.V., Plant Signaling Systems and the Formation of Plant Resistance to Biotic Stress, Kyiv: Phoenix, 2015.
13. Fida, T.T., Voordouw, J., Ataeian, M., et al., Synergy of sodium nitroprusside and nitrate in inhibiting the activity of sulfate reducing bacteria in oil-containing bioreactors, Front. Microbiol., 2018, vol. 9, p. 981. https://doi.org/10.3389/fmicb.2018.00981
14. Floryszak-Wieczorek, J., Milczarek, G., Arasimowicz, M., and Ciszewski, A., Do nitric oxide donors mimic endogenous NO-related response in plants?, Planta, 2006, vol. 224, pp. 1363–1372. https://doi.org/10.1007/s00425-006-0321-1
15. Floryszak-Wieczorek, J., Arasimowicz, M., Milczarek, G., et al., Only an early nitric oxide burst and the following wave of secondary nitric oxide generation enhanced effective defence responses of pelargonium to a necrotrophic pathogen, New Phytol., 2007, vol. 175, pp. 718–730.https://doi.org/10.1111/j.1469-8137.2007.02142.x
16. Hong, J.K., Kang, S.R., Kim, Y.H., et al., Hydrogen peroxide- and nitric oxide-mediated disease control of bacterial wilt in tomato plants, Plant Pathol. J., 2013, vol. 29, pp. 386–396. https://doi.org/10.5423/PPJ.OA.04.2013.0043
17. Iglesias, M.J., Terrile, M.C., Windels, D., et al., MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis, PLoS One, 2014, vol. 9. e107678. https://doi.org/10.1371/journal.pone.0107678
18. Iqbal, Z., Iqbal, M.S., Hashem, A., Abd-Allah, E.F., and Ansari, M.I., Plant defense responses to biotic stress and its interplay with fluctuating dark/ light conditions, Front. Plant Sci., 2021, vol. 12, p. 631810. https://doi.org/10.3389/fpls.2021.631810
19. Kalra, C. and Babbar, S.B., Nitric oxide promotes in vitro organogenesis in Linum usitatissimum (L.), Plant Cell Tiss. Organ Cult., 2010, vol. 103, pp. 353–359. https://doi.org/10.1007/s11240-010-9788-3
20. Khan, M., Siddiqui, M.H., Mohammad, F., and Naeem, M., Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress, Nitric Oxide, 2012, vol. 27, p. 210218. https://doi.org/10.1016/j.niox.2012.07.005
21. Kolomiiets, Y.V., Grygoryuk, I.P., Butsenko, L.M., and Kalinichenko, A.V., Biotechnological control methods against phytopathogenic bacteria in tomatoes, Appl. Ecol. Environ. Res., 2019a, vol. 17, no. 2, pp. 3215–3230. https://doi.org/10.15666/aeer/1702_32153230
22. Kolomiiets, Y., Grygoryuk, I., Likhanov, A., et al., Induction of bacterial canker resistance in tomato plants using plant growth promoting rhizobacteria, Open Agricult. J., 2019b, vol. 13, no. 1, pp. 215–222. https://doi.org/10.2174/1874331501913010215
23. Kolomiiets, Y., Grygoryuk, I., Butsenko, L., et al., Identification and biological properties of the pathogen of soft rot of tomatoes in the greenhouse, Open Agricult. J., 2020, vol. 14, no. 1, pp. 290–298.https://doi.org/10.2174/18743-31502014010290
24. Koo, Y.M., Heo, A.Y., and Choi, H.W., Salicylic acid as a safe plant protector and growth regulator, Plant Pathol. J., 2020, vol. 36, no. 1, pp. 1–10. https://doi.org/10.5423/PPJ.RW.12.2019.0295
25. Lai, J., Li, R., Xu, X., et al., Genome-wide patterns of genetic variation among elite maize inbred lines, Nat. Genet., 2010, vol. 42, pp. 1027–1030. https://doi.org/10.1038/ng.684
26. Lamattina, L., Garcia-Mata, C., Graziano, M., and Pagnussat, G., Nitric oxide: the versatility of an extensive signal molecule, Ann. Rev. Plant Biol., 2003, vol. 54, pp. 109–136.
27. Lee, Y.H., Choi, C.W., Kim, S.H., et al., Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt, Plant Pathol. J., 2012, vol. 28, pp. 32–39. https://doi.org/10.5423/PPJ.OA.10.2011.0200
28. Lei, Y., Yin, C., and Li, C., Adaptive responses of Populus przewalskii to drought stress and SNP application, Acta Physiol. Plant., 2007, vol. 29, pp. 519–526. https://doi.org/10.1007/s11738-007-0062-1
29. Li, X., Sun, Z., Shao, S., et al., Tomato–Pseudomonas syringae interactions under elevated CO2 concentration: the role of stomata, J. Exp. Bot., 2015, vol. 66, art. 307316. https://doi.org/10.1093/jxb/eru420
30. Manai, J., Kalai, T., Gouia, H., and Corpas, F.J., Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants, J. Soil Sci. Plant Nutr., 2014, vol. 14, no. 2, pp. 433–446. https://doi.org/10.4067/S0718-95162014005000034
31. Mandal, M.K., Chandra-Shekara, A.C., Jeong, R.D., et al., Oleic acid-dependent modulation of nitric oxide associated1 protein levels regulates nitric oxide-mediated defense signaling in Arabidopsis, Plant Cell, 2012, vol. 24, pp. 1654–1674. https://doi.org/10.1155/2013/561056
32. Mandal, S., Kar, I., Mukherjee, A.K., and Acharya, P., Elicitor-induced defense responses in Solanum lycopersicum against Ralstonia solanacearum, Sci. World J., 2013, vol. 25, p. 561056.https://doi.org/10.1105/tpc.112.096768
33. Melotto, M., Underwood, W., Koczan, J., et al., Plant stomata function in innate immunity against bacterial invasion, Cell, 2012, vol. 126, pp. 969–980. https://doi.org/10.1016/j.cell.2006.06.054
34. Miedes, E., Vanholme, R., Boerjan, W., and Molina, A., The role of the secondary cell wall in plant resistance to pathogens, Front. Plant Sci., 2014, vol. 5, p. 358. https:// www.frontiersin.org/article/10.3389/fpls.2014.00358
35. Mur, L.A., Carver, T.L., and Prats, E., NO way to live; the various roles of nitric oxide in plant–pathogen interactions, J. Exp. Bot., 2006, vol. 57, pp. 489–505. https://doi.org/10.1093/jxb/erj052
36. Nabi, R.B.S., Tayade, R., Hussain, A., et al., Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress, Environ. Exp. Bot., 2019, vol. 161, pp. 120–133. https://doi.org/10.1016/j.envexpbot.2019.02.003
37. Nakaune, M., Tsukazawa, K., Uga, H., et al., Low sodium chloride priming increases seedling vigor and stress tolerance to Ralstonia solanacearum in tomato, Plant Biotechnol., 2012, vol. 29, pp. 9–18. https://doi.org/10.5511/plantbiotechnology.11.1122a
38. Nasibi, F. and Kalantari, K.M., Influence of nitric oxide in protection of tomato seedling against oxidative stress induced by osmotic stress, Acta Physiol. Plant., 2009, vol. 31, pp. 1037– 1044. https://doi.org/10.1007/s11738-009-0323-2
39. Neill, S.J., Desikan, R., and Hancock, J.T., Nitric oxide signalling in plants, New Phytol., 2003, vol. 159, pp. 11–35. https://doi.org/10.1046/j.1469-8137.2003.00804.x
40. Neill, S., Barros, R., Bright, J., et al., Nitric oxide, stomatal closure, and abiotic stress, J. Exp. Bot., 2008, vol. 59, no. 2, pp. 165–176. https://doi.org/10.1093/jxb/erm293
41. Nikraftar, F., Taheri, P., Falahati Rastegar, M., and Tarighi, S., Tomato partial resistance to Rhizoctonia solani involves antioxidative defense mechanisms, Physiol. Mol. Plant Pathol., 2013, vol. 81, no. 1, pp. 74–83. https://doi.org/10.1016/j.pmpp.2012.11.004
42. Noorbakhsh, Z. and Taheri, P., Nitric oxide: a signaling molecule which activates cell wall-associated defense of tomato against Rhizoctonia solani, Eur. J. Plant Pathol., 2016, vol. 144, pp. 551–568. https://doi.org/10.1007/s10658-015-0794-5
43. Otvös, K, Pasternak, T.P., Miskolczi, P., Domoki, M., Dorigotov, D., et al., Nitric oxide is required for, and promotes auxin-mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures, Plant J., 2005, vol. 43, pp. 849–860.
44. Pagnussat, G., Lanteri, M.L., Lombardo, M.C., and Lamattina, L., Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development, Plant Physiol., 2004, vol. 135, no. 1, pp. 279–286. https://doi.org/10.1104/pp.103.038554
45. Paris, R., Lamattina, L., and Casalongue, C.A., Nitric oxide promotes the wound-healing response of potato leaflets, Plant Physiol. Biochem., 2007, vol. 45, no. 1, pp. 80–86. https://doi.org/10.1016/j.plaphy.2006.12.001
46. Planchet, E. and Kaiser, W.M., Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: a comparison using abiotic and biotic NO sources, J. Exp. Bot., 2006, vol. 57, pp. 3043–3055. https://doi.org/10.1093/jxb/erl070
47. Pogorelko, G., Lionetti, V., Bellincampi, D., and Zabotina, O.A., Cell wall integrity: Targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens, Plant Signal. Behav., 2013, vol. 8. e25435. https://doi.org/10.4161/psb.25435
48. Ramadan, A.A., Abd Elhamid, E.M., and Sadak, M.S., Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions, Bull. Natl. Res. Centre, 2019, vol. 43, pp. 118–130. https://doi.org/10.1186/s42269-019-0156-0
49. Rico-Lemus, M. and RodrHguez-Garay, B., SNP as an effective donor of nitric oxide for in vitro plant cell and tissue culture, J. Plant Biochem. Physiol., 2014, vol. 2. e127. https://doi.org/10.4172/2329-9029.1000e127
50. Ruan, J., Zhou, Y., Zhou, M., et al., Jasmonic acid signaling pathway in plants, Int. J. Mol. Sci., 2019, vol. 20, no. 10, p. 2479. https://doi.org/10.3390/ijms20102479
51. Saed-Moucheshi, A., Pakniyat, H., Pirasteh-Anosheh, H., and Azooz, M., Role of ROS as signaling molecules in plants, in Oxidative Damage to Plants. Antioxidant Networks and Signaling, Ahmad P, Ed., New York: Springer, 2014, pp. 585–620.
52. Siddiqui, M.H., Al-Whaibi, M.H., and Basalah, M.O., Role of nitric oxide in tolerance of plants to abiotic stress, Protoplasma, 2011, vol. 248, pp. 447–455. https://doi.org/10.1007/s00709-010-0206-9
53. Siddiqui, M.H., Alamri, S.A., Al-Khaishany, M.Y.Y., et al., Sodium nitroprusside and indole acetic acid improve the tolerance of tomato plants to heat stress by protecting against DNA damage, J. Plant Interact., 2017, vol. 12, no. 1, pp. 177–186. https://doi.org/10.1080/17429145.2017.1310941
54. Tyuterev, S.L., Ecologically safe inducers of plant resistance to diseases and physiological stresses, Plant Protect. News, 2015, no. 1 (83), pp. 3–13.
55. Underwood, W., The plant cell wall: a dynamic barrier against pathogen invasion, Front. Plant Sci., 2012, vol. 3, pp. 1–6. https://doi.org/10.3389/fpls.2012.00085
56. Velikova, V., Yordanov, I., and Edreva, A., Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines, J. Plant Sci., 2000, vol. 151, pp. 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1
57. Verma, A., Malik, C., and Gupta, V., Sodium nitroprusside-mediated modulation of growth and antioxidant defense in the in vitro raised plantlets of peanut genotypes, Peanut Sci., 2014, vol. 41, pp. 25–31. https://doi.org/10.3146/PS12-13.1
58. Zhao, J., Buchwaldt, L., Rimmer, S.R., et al., Patterns of differential gene expression in Brassica napus cultivars infected with Sclerotinia sclerotiorum, Mol. Plant Pathol., 2009, vol. 10, pp. 635–649.https://doi.org/10.1111/j.1364-3703.2009.00558.x