Гриби роду Fusarium є особливо небезпечними фітопатогенами, які, серед інших сільськогосподарських культур, уражують і пшеницю м’яку (Triticum aestivum L.), оскільки, окрім втрат урожаю, можуть призводити до отруєнь людей та худоби. В огляді висвітлено сучасний стан проблеми визначення грибів роду Fusarium, що уражують пшеницю м’яку. Методи мікробіологічного визначення фузаріїв досі входять до лабораторних протоколів та рекомендацій, тому в огляді згадано деякі з найпопулярніших родо- та видоспецифічних середовищ. Однак значно більшу увагу в сучасних публікаціях приділяють визначенню грибів роду Fusarium за допомогою полімеразної ланцюгової реакції (ПЛР). Тому в огляді висвітлено можливі тест-системи для традиційної ПЛР для визначення представників роду загалом або ж таких, які продукують особливо небезпечні метаболіти (ніваленол, дезоксиніваленол, 3-ацетилдезоксиніваленол, 4-ацетилніваленол та енніатин). Наведено пари праймерів для якісного визначення наявності в дослідних зразках тих чи інших видів фузаріїв або їх комбінацій. Для ПЛР у реальному часі, які можна використати для більш точного якісного та кількісного родо- та видоспецифічного визначення збудників фузаріозу, описано деталі протоколів, послідовності праймерів та зондів; для зондів наведено рекомендовані фарбники. Для деяких пар праймерів також вказано додаткову інформацію щодо їх валідації і чутливості тест-систем. Отже методики, наведені в огляді, є достатньо точними та вичерпними, можуть бути використаними у комбінації та окремо для родо- і видоспецифічного якісного або кількісного визначення грибів роду Fusarium.
Ключові слова: Fusarium, снігова пліснява, фузаріоз колоса, пшениця, молекулярні маркери
Повний текст та додаткові матеріали
Цитована література
1. Abass, M.H., Madhi, Q.H., and Matrood, A.A.A., Identity and prevalence of wheat damping-off fungal pathogens in different fields of Basrah and Maysan provinces, Bull. Natl. Res. Cent., 2021, vol. 45, p. 51. https://doi.org/10.1186/s42269-021-00506-0
2. Amato, B., Pfohl, K., Tonti, S., et al., Fusarium proliferatum and fumonisin B1 co-occur with Fusarium species causing Fusarium Head Blight in durum wheat in Italy. JABFQ 88:288–233. https://doi.org/10.5073/JABFQ.2015.088.033
3. Anderson, M.G. and Atkinson, R.G., Comparison of media for the isolation of Fusarium oxysporum f. sp lycopersici from sawdust used for growing tomatoes, Can. J. Plant Sci., 1974, vol. 54, no. 2, pp. 373–374. https://doi.org/10.4141/cjps74-057
4. Aoki, T. and O’Donnell, K., Morphological and molecular characterization of Fusarium pseudograminearum recognized as the Group 1 population of F. graminearum, Mycologia, 1999, vol. 91, no. 4, pp. 597–609. doi 10.1080/00275514.1999.12061058
5. Arif, M., Chawla, S., Zaidi, N.W., et al., Development of specific primers for genus Fusarium and F. solani using rDNA sub-unit and transcription elongation factor (TEF-1α) gene, Afr. J. Biotechnol., 2012, vol. 11, no. 2, pp. 444–447. https://doi.org/10.5897/AJB10.489
6. Birr, T., Hasler, M., Verreet, J.A., et al., Composition and predominance of Fusarium species causing Fu-sarium head blight in winter wheat grain depending on cultivar susceptibility and meteorological factors, Microorganisms, 2020, vol. 8, no. 4, p. 617. https://doi.org/10.3390/microorganisms8040617
7. Bluhm, B.H., Flaherty, J.E., Cousin, M.A., et al., Multiplex polymerase chain reaction assay for the differential detection of trichothecene- and fumonisin-producing species of Fusarium in cornmeal, J. Food Prot., 2002, vol. 65, no. 12, pp. 1955–1961. https://doi.org/10.4315/0362-028X-65.12.1955
8. Brandfass, C. and Karlovsky, P., Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis, BMC Microbiol., 2006, vol. 6, p. 4. https://doi.org/10.1186/1471-2180-6-4
9. Casasnovas, F., Fantini, E.N., Palazzini, J.M., et al., Development of amplified fragment length polymorphism (AFLP)-derived specific primer for the detection of Fusarium solani aetiological agent of peanut brown root rot, J. Appl. Microbiol., 2013, vol. 114, no. 6, pp. 1782–1792. https://doi.org/10.1111/jam.12183
10. Castanares, E., Albuquerque, D.R., Dinolfo, M.I., et al., Trichothecene genotypes and production profiles of Fusarium graminearum isolates obtained from barley cultivated in Argentina, Int. J. Food Microbiol., 2014, vol. 179, pp. 57–63. https://doi.org/10.1016/j.ijfoodmicro.2014.03.024
11. Covarelli, L., Beccari, G., and Salvi, S., Infection by mycotoxigenic fungal species and mycotoxin contamination of maize grain in Umbria, central Italy, Food Chem. Toxicol., 2011, vol. 49, pp. 236 5–2369. https://doi.org/10.1016/j.fct.2011.06.047
12. Demeke, T., Clear, R.M., Patrick, S.K., et al., Species-specific PCR-based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis, Int. J. Food Microbiol., 2005, vol. 103, no. 3, pp. 271–284. https://doi.org/10.1016/j.ijfoodmicro.2004.12.026
13. Deng, Y.Y., Li, W., Zhang, P., et al., Fusarium pseudograminearum as an emerging pathogen of crown rot of wheat in eastern China, Plant Pathol., 2020, vol. 69, pp. 240–248. https://doi.org/10.1111/ppa.13122
14. Desmond, O.J., Manners, J.M., Stephens, A.E., et al., The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production; programmed cell death and defence responses in wheat, Mol. Plant Pathol., 2008, vol. 9, no. 4, pp. 435–445. https://doi.org/10.1111/j.1364-3703.2008.00475.x
15. Doohan, F.M., Parry, D.W., Jenkinson, P., et al., The use of species-specific PCR-based assays to analyze Fusarium ear blight of wheat, Plant Pathol., 1998, vol. 47, pp. 197–205. https://doi.org/10.1046/j.1365-3059.1998.00218.x
16. Elbelt, S., Siou, D., Gelisse, S., et al., Optimized real-time qPCR assays for detecting and quantifying the Fusarium and Microdochium species responsible for wheat head blight, as defined by MIQE guidelines, bioRxiv, 2018, art. 272534. https://doi.org/10.1101/272534
17. Faria, C.B., Abe, C.A., da Silva, C.N., et al., New PCR assays for the identification of Fusarium verticillioides, Fusarium subglutinans, and other species of the Gibberella fujikuroi complex, Int. J. Mol. Sci., 2012, vol. 13, no. 1, pp. 115–132. https://doi.org/10.3390/ijms13010115
18. Fisher, N.L., Burgess, L.W., Toussoun, T.A., et al., Carnation leaves as a substrate and for preserving cultures of Fusarium species, Phytopathology, 1982, vol. 72, no. 1, pp. 151–155. https://doi.org/10.1094/Phyto-72-151
19. Glazebrook, J., Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens, Annu. Rev. Phytopathol., 2005, vol. 43, pp. 205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923
20. Góral, T., Wisniewska, H., Ochodzki, P., et al., Relationship between Fusarium head blight, kernel damage, concentration of Fusarium biomass, and Fusarium toxins in grain of winter wheat inoculated with Fusarium culmorum, Toxins, 2018, vol. 11, no. 1, p. 2. doi 10.3390/toxins11010002
21. Halstensen, A.S., Nordby, K.C., Eduard, W., et al., Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins, J. Environ. Monit., 2006, vol. 8, no. 12, pp. 1235–1241. https://doi.org/10.1039/b609840a
22. Hayashi, Y., Kozawa, T., Aiuchi, D., et al., A selective medium to isolate airborne spores of Microdochium nivale, causing winter wheat scab, Eur. J. Plant Pathol., 2014, vol. 138, pp. 247–256. https://doi.org/10.1007/s10658-013-0324-2
23. Hrytsev, O.A., Zozulya, O.L., Vorobiova, N.G., et al., Monitoring of species composition of fungi of the genus Fusarium in seed materials of winter wheat on Ukrainian territory, Micribiol. Biotechnol., 2018, vol. 2, pp. 81–89. https://doi.org/10.18524/2307-4663.2018.2(42).134443
24. Johnson, D.D., Flaskerud, G.K., Taylor, R.D., et al., Fusarium head blight of wheat and barley, in Quantifying Economic Impacts of Fusarium Head Blight in Wheat, Leonard, K.J. and Bushnell, W.R., Eds., St. Paul, USA: APS Press, 2003, pp. 461–483.
25. Jung, B., Lee, S., Ha, J., et al., Development of a selective medium for the fungal pathogen Fusarium graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae, Plant Pathol. J., 2013, vol. 29, no. 4, pp. 446–450. https://doi.org/10.5423/PPJ.NT.07.2013.0068
26. Jurado, M., Vazquez, C., Patico, B., et al., PCR detection assays for the trichothecene-producing species Fusarium graminearum, Fusarium culmorum, Fusarium poae, Fusarium equiseti and Fusarium sporotrichioides, Syst. Appl. Microbiol., 2005, vol. 28, pp. 562–568.
27. Jurado, M., Vázquez, C., Marín, S., et al., PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize, Syst. Appl. Microbiol., 2006, vol. 29, no. 8, pp. 681–689. https://doi.org/10.1016/j.syapm.2006.01.014
28. Kazan, K. and Gardiner, D.M., Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: recent progress and future prospects, Mol. Plant Pathol., 2018, vol. 19, no. 7, pp. 1547–1562. https://doi.org/10.1111/mpp.12639
29. Kerenyi, Z., Moretti, A., Waalwijk, C., et al., Mating type sequences in asexually reproducing Fusarium species, Appl. Environ. Microbiol., 2004, vol. 70, pp. 4419–4423. https://doi.org/10.1128/AEM.70.8.4419-4423.2004
30. Khaledi, N., Taheri, P., and Falahati, R.M., Identification, virulence factors characterization, pathogenicity and aggressiveness analysis of Fusarium spp., causing wheat head blight in Iran, Eur. J. Plant Pathol., 2017, vol. 147, pp. 897–918. https://doi.org/10.1007/s10658-016-1059-7
31. Komada, H., A new selective medium for isolating Fusarium from natural soil, Proc. Am. Phytopathol. Soc., 1976, vol. 3, p. 221.
32. Konstantinova, P. and Yli-Mattila, T., IGS-RFLP analysis and development of molecular markers for identification of Fusarium poae, Fusarium langsethiae, Fusarium sporotrichioides and Fusarium kyushuense, Int. J. Food Microbiol., 2004, vol. 95, pp. 321–331. https://doi.org/10.1016/j.ijfoodmicro.2003.12.010
33. Kovalyshyna, H.M., Murashko, L.A., and Kovalyshyn, A.B., Spike diseases of winter wheat from the Forest-Steppe of Ukraine, Bull. Ukr. Soc. Genet. Breed., 2008, vol. 6, no. 2, pp. 223–239.
34. Krnjaja, V., Stanković, S., Obradović, A., et al., Trichothecene genotypes of Fusarium graminearum populations isolated from winter wheat crops in Serbia, Toxins, 2018, vol. 10, no. 11, p. 460. https://doi.org/10.3390/toxins10110460
35. Kulik, T., Detection of Fusarium tricinctum from cereal grain using PCR assay, J. Appl. Genet., 2008, vol. 49, pp. 305–311. https://doi.org/10.1007/BF03195628
36. Kulik, T., Fordonski, G., Pszczylkowska, A., et al., Development of PCR assay based on ITS2 rDNA polymorphism for the detection and differentiation of Fusarium sporotrichioides, FEMS Microbiol. Lett., 2004, vol. 239, pp. 181–186. https://doi.org/10.1016/j.femsle.2004.08.037
37. Kuzdraliński, A., Kot, A., Szczerba, H., et al., A review of conventional PCR assays for the detection of selected phytopathogens of wheat, J. Mol. Microbiol. Biotechnol., 2017a, vol. 27, pp. 175–189. https://doi.org/10.1159/000477544
38. Kuzdraliński, A., Nowak, M., Szczerba, H., et al., The composition of Fusarium species in wheat husks and grains in south-eastern Poland, J. Integr. Agric., 2017b, vol. 16, no. 7, pp. 1530–1536. https://doi.org/10.1016/S2095-3119(16)615 52-6
39. Kyslukh, T.M. and Shevchuk, O.V., Harmfulness of the main pathogens of Fusarium head blight of winter wheat in the Forest-Steppe zone of Ukraine, Bull. Agricult. Sci., 2006, vol. 1, pp. 16–18.
40. Leslie, J.F., Summerel, B.A., and Bullock, S., The Fusarium Laboratory Manual, Wiley, 2006. ISBN 0813819199, 9780813819198
41. Ma, H., Zhang, X., Yao, J., et al., Breeding for the resistance to Fusarium head blight of wheat in China, Front. Agr. Sci. Eng., 2019, vol. 6, no. 3, pp. 251–264. doi 10.15302/J-FASE-2019262
42. Martinez, M., Castanares, E., Dinolfo, M.I., et al., Presencia de Fusarium graminearum en muestras de trigo destinado al consumo humano, Rev. Argent. Microbiol., 2014, vol. 46, no. 1, pp. 41–44. https://doi.org/10.1016/S0325-7541(14)70046-X
43. Miller, J.D., Greenhalgh, R., Wang, Y., et al., Trichothecene chemotypes of three Fusarium species, Mycologia, 1991, vol. 83, pp. 121–130. https://doi.org/10.2307/3759927
44. Minati, M.H. and Mohammed-Ameen, M.K., Novel report on six Fusarium species associated with head blight and crown rot of wheat in Basra province, Iraq. Bull. Natl. Res. Cent., 2019, vol. 43, p. 139. https://doi.org/10.1186/s42269-019-0173-z
45. Mishra, P.K., Fox, R.T., and Culham, A., Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria, FEMS Microbiol. Lett., 2003, vol. 218, no. 2, pp. 329–332. https://doi.org/10.1111/j.1574-6968.2003. tb11537.x
46. Möller, E.M., Chelkowski, J., and Geiger, H.H., Species-specific PCR assays for the fungal pathogens Fusarium moniliforme and Fusarium subglutinans and their application to diagnose maize ear rot disease, J. Phytopathol., 1999, vol. 147, pp. 497–508. https://doi.org/10.1046/j.1439-0434.1999.00380.x
47. Mulè, G., Susca, A., Stea, G., et al., A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans, Eur. J. Plant Pathol., 2004, vol. 110, pp. 495– 502. https://doi.org/10.1023/B:EJPP.0000032389.84048.71
48. Nicholson, P. and Parry, D.W., Development of a PCR assay to detect Fusarium poae in wheat, Plant Pathol., 1996, vol. 45, pp. 872–883. https://doi.org/10.1111/j.1365-3059.1996.tb02898.x
49. Nicholson, P., Simpson, D.R., Weston, G., et al., Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays, Physiol. Mol. Plant Pathol., 1998, vol. 53, pp. 17–37. https://doi.org/10.1006/pmpp.1998.0170
50. Nicholson, P., Lees, A.K., Maurin, N., et al., Development of a PCR assay to identify and quantify Microdochium nivale var. nivale and Microdochium nivale var. majus in wheat, Physiol. Mol. Plant Pathol., 1996, vol. 48, pp. 257–271. https://doi.org/10.1006/pmpp.1996.0022
51. Nicholson, P., Simpson, D., Wilson, A.H., et al., Detection and differentiation of trichothecene and enniatin-producing Fusarium species on small-grain cereals, Eur. J. Plant Pathol., 2004, vol. 110, pp. 503–514. https://doi.org/10.1023/B:EJPP.0000032390.65641.a7
52. Nicolaisen, M., Suproniene, S., Nielsen, L.K., et al., Real-time PCR for quantification of eleven individual Fusarium species in cereals, J. Microbiol. Methods, 2009, vol. 76, no. 3, pp. 234–240. https://doi.org/10.1016/j.mimet.2008.10.016
53. Niessen, L., Schmidt, H., and Vogel, R.F., The use of tri5 gene-sequences for PCR detection and taxonomy of trichothecene-producing species in the Fusarium section Sporotrichiella, Int. J. Food Microbiol., 2004, vol. 95, pp. 305–319. https://doi.org/10.1016/j.ijfoodmicro.2003.12.009
54. Nishimura, N., Selective media for Fusarium oxysporum, J. Gen. Plant Pathol., 2007, vol. 73, pp. 342–348. https://doi.org/10.1007/s10327-007-0031-y
55. Papavizas, G.C., Evaluation of various media and antimicrobial agents for isolation of Fusarium from soil, Phytopathology, 1967, vol. 57, pp. 848–852.
56. Patino, B., Mirete, S., González-Jaén, M.T., et al., PCR detection assay of fumonisin-producing Fusarium verticillioides strains, J. Food Prot., 2004, vol. 67, no. 6, pp. 1278–1283. https://doi.org/10.4315/0362-028x-67.6.1278
57. Pollard, A.T. and Okubara, P.A., Real-time PCR quantification of Fusarium avenaceum in soil and seeds, J. Microbiol. Methods, 2019, vol. 157, pp. 21–30. https://doi.org/10.1016/j.mimet. 2018.12.009
58. Puhall, J., Classification of strains of Fusarium oxysporum on the basis of vegetative compatibility, Can. J. Bot., 1985, vol. 63, pp. 179–183.
59. Quarta, A., Mita, G., Haidukowski, M., et al., Assessment of trichothecene chemotypes of Fusarium culmorum occurring in Europe, Food Additives Contam., 2005, vol. 22, no. 4, pp. 309–315. https://doi.org/10.1080/026520-30500058361
60. Quarta, A., Mita, G., Haidukowski, M., et al., Multiplex PCR assay for the identification of nivalenol, 3-and 15-acetyl-deoxynivalenol chemotypes in Fusarium, FEMS Microbiol. Lett., 2006, vol. 259, no. 1, pp. 7–13. https://doi.org/10.1111/j.1574-6968.2006.00235.x
61. Ramdass, A.C., Villafana, R.T., and Rampersad, S.N., TRI genotyping and chemotyping: a balance of power, Toxins, 2020, vol. 12, p. 64. https://doi.org/10.3390/toxins12020064
62. Reischer, G.H., Lemmens, M., Farnleitner, A., et al., Quantification of Fusarium graminearum in infected wheat by species specific real-time PCR applying a TaqMan Probe, J. Microbiol. Methods, 2004, vol. 59, no. 1, pp. 141–146. https://doi.org/10.1016/j.mimet.2004.06.003
63. Rossi, V., Terzi, V., Moggi, F., et al., Assessment of Fusarium infection in wheat heads using a quantitative PCR assay, Food Addit. Contam., 2007, vol. 24, no. 10, pp. 1121–1130. https://doi.org/10.1080/02652030701551818
64. Sadhasivam, S., Britzi, M., Zakin, V., et al., Rapid detection and identification of mycotoxigenic fungi and mycotoxins in stored wheat grain, Toxins, 2017, vol. 9, no. 10, p. 302. https://doi.org/10.3390/toxins9100302
65. Salgado, J.D., Madden, L.V., and Paul, P.A., Quantifying the effects of Fusarium head blight on grain yield and test weight in soft red winter wheat, Phytopathology, 2015, vol. 105, no. 3, pp. 295–306. https://doi.org/10.1094/PHYTO-08-14-0215-R
66. Sanoubar, R., Bauer, A., and Seigner, L., Detection, identification and quantification of Fusarium graminearum and Fusarium culmorum in wheat kernels by PCR techniques, J. Plant Pathol. Microbiol., 2015, vol. 6, p. 287. https://doi.org/10.4172/2157-7471.1000287
67. Schilling, A.G., Möller, E.M., and Geiger, H.H., Polymerase chain reaction-based assays for species-specific detection of Fusarium culmorum, F. graminearum and F. avenaceum, Mol. Plant Pathol., 1996, vol. 86, pp. 515–522.
68. Segalin, M. and Reis, E.M., Semi-selective medium for Fusarium graminearum detection in seed samples, Summa Phytopathol., 2010, vol. 36, no. 4, pp. 338–341. https://doi.org/10.1590/S0100-54052010000400010
69. Shikur Gebremariam, E., Sharma-Poudyal, D., Paulitz, T.C., et al., Identity and pathogenicity of Fusarium species associated with crown rot on wheat (Triticum spp.) in Turkey, Eur. J. Plant Pathol., 2018, vol. 150, pp. 387–399. https://doi.org/10.1007/s10658-017-1285-7
70. Snijders, C.H.A. and Perkowski, J., Effects of head blight caused by Fusarium culmorum on toxin content and weight of wheat kernels, Phytopathology, 1990, vol. 79, pp. 455–469.
71. Steenkamp, E.T., Wingfield, B.D., Coutinho, T.A., et al., PCR-based identification of MAT-1 and MAT-2 in the Gibberella fujikuroi species complex, Appl. Environ. Microbiol., 2000, vol. 66, pp. 4378–4382. https://doi.org/10.1128/aem.66.10.4378-4382.2000
72. Terzi, V., Morcia, C., Faccioli, P., et al., Fusarium DNA traceability along the bread production chain, Int. J. Food Sci. Technol., 2007, vol. 42, pp. 1390–1396. https://doi.org/10.1111/j.1365-2621.2006.01344.x
73. Thrane, U., Comparison of three selective media for detecting Fusarium species in foods: a collaborative study, Int. J. Food Microbiol., 1996, vol. 29, no. 2–3, pp. 149–156. https://doi.org/10.1016/0168-1605(95)00040-2
74. Turner, A.S., Lees, A.K., Rezanoor, H.N., et al., Refinement of PCR-detection of Fusarium avenaceum and evidence from DNA marker studies for phonetic relatedness to Fusarium tricinctum, Plant Pathol., 1998, vol. 47, pp. 278–288. https://doi.org/10.1046/j.1365-3059.1998.00250.x
75. Waalwijk, C., Kastelein, P., de Vries, Ph.M., et al., Major changes in Fusarium spp. in wheat in the Netherlands, Eur. J. Plant Pathol., 2003, vol. 109, pp. 743–754. https://doi.org/10.1023/A:1026086510156
76. Waalwijk, C., van der Heide, R., de Vries, I., et al., Quantitative detection of Fusarium species in wheat using TaqMan, Eur. J. Plant Pathol., 2004, vol. 110, pp. 481–494. https://doi.org/10.1023/B:EJPP.0000032387.52385.13
77. Wang, C.L. and Cheng, Y.H., Identification and trichothecene genotypes of Fusarium graminearum species complex from wheat in Taiwan, Bot. Stud., 2017, vol. 58, p. 4. https://doi.org/10.1186/s40529-016-0156-4
78. Ward, T.J., Clear, R.M., Rooney, A.P., et al., An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America, Fungal Genet. Biol., 2008, vol. 45, no. 4, pp. 473–484. https://doi.org/10.1016/j.fgb.2007.10.003
79. Wilson, A., Simpson, D., Chandler, E., et al., Development of PCR assays for the detection and differentiation of Fusarium sporotrichioides and Fusarium langsethiae, FEMS Microbiol. Lett., 2004, vol. 233, no. 1, pp. 69–76. https://doi.org/10.1016/j.femsle.2004.01.040
80. Yli-Mattila, T., Mach, R., Alekhina, I.A., et al., Phylogenetic relationship of Fusarium langsethiae to Fusarium poae and F. sporotrichioides as inferred by IGS, ITS, β-tubulin sequence and UP-PCR hybridization analysis, Int. J. Food Microbiol., 2004, vol. 95, pp. 267–285. https://doi.org/10.1016/j.ijfoodmicro.2003.12.006
81. Yli-Mattila, T., Paavanen-Huhtala, S., Jestoi, M., et al., Real-time PCR detection and quantification of Fusarium poae, F. graminearum, F. sporotrichioides and F. langsethiae in cereal grains in Finland and Russia, Arch. Phytopathol. Pflanzenschutz., 2008, vol. 41, no. 4, pp. 243–260. https://doi.org/10.1080/03235400600680659
82. Yoder, W.T. and Christianson, L.M., Species-specific primers resolve members of Fusarium section Fusarium. Taxonomic status of the edible “Quorn” fungus reevaluated, Fungal Genet. Biol., 1998, vol. 23, no. 1, pp. 68–80. https://doi.org/10.1006/fgbi.1997.1027