В роботі встановлено систематичне положення штаму Bacillus sp. 20F – антагоніста фітопатогенних бактерій і мікроміцетів з вираженими фосфатмобілізувальними властивостями. Показано, що за сукупністю культурально-морфологічних і фізіолого-біохімічних властивостей штам належить до групи Bacillus subtilis. Жирні кислоти клітинних стінок штаму представлені переважно розгалуженими похідними ізо- та антеізо- С15:0 і С17:0 жирними кислотами (приблизно 82 %), що характерно для виду Bacillus amyloliquefaciens. За результатами аналізу нуклеотидної послідовності гена 16S рРНК, а також при вивченні профілю поліморфних нуклеотидів штам віднесено до виду Bacillus velezensis.
Ключові слова: Bacillus sp. 20F, культурально-морфологічні ознаки, фізіолого-біохімічні властивості, жирнокислотний склад, молекулярно-генетичний аналіз, ідентифікація, систематичне положення
Повний текст та додаткові матеріали
Цитована література
1. Berkeley, R., Heyndrickx, M., Logan, N., et al., Applications and Systematics of Bacillus and Relatives, Oxford: Blackwell Science Ltd., 2002.
2. Beneduzi, A., Ambrosini, A., and Passaglia, L.M.P., Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents, Genet. Mol. Biol., 2012. https://doi.org/10.1590/S1415-47572012000600020
3. Borriss, R., Chen, X.H., Rueckert, C., et al., Relationship of Bacillus amiloliquefaciens clades associated with strains DSM7T and FZB42: a proposal for Bacillus amiloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amiloliquefaciens subsp. plantarum subsp. nov. based on their discriminating complete genome sequences, Int. J. Syst. Evol. Microbiol., 2011, vol. 61, pp. 1786–1801.
4. Chazarreta Cifre, L., Alemany, M., de Mendoza, D., et al., Exploring the biosynthesis of unsaturated fatty acids in Bacillus cereus ATCC 14579 and functional characterization of novel acyl-lipid desaturases, Appl. Environ. Microbiol., 2013. https://doi.org/10.1128/AEM.01761-13
5. de Carvalho, C.C.C.R. and Caramujo, M.J., The various roles of fatty acids, Molecules, 2018. https://doi.org/10.3390/molecules23102583
6. de Sarrau, B., Clavel, T., Zwickel, N., et al., Unsaturated fatty acids from food and in the growth medium improve growth of Bacillus cereus under cold and anaerobic conditions, Food Microbiol., 2013. https://doi.org/10.1016/j.fm.2013.04.008
7. de Vos, P., Garrity, G.M., Jones, D., et al., The Firmicutes, vol. 3 of Bergey’s Manual of Systematic Bacteriology, New York: Springer, 2009, 2nd ed.
8. Diomande, S.E., Nguyen-The, C., and Guinebretiere, M.H., Role of fatty acids in Bacillus environmental adaptation, J. Front. Microbiol., 2015. https://doi.org/10.3389/fmicb.2015.00813
9. Dunlap, C.A., Kim, S.J., Kwon, S.W., et al., Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus, Int. J. Syst. Evol. Microbiol., 2015. https://doi.org/10.1099/ijs.0.000226
10. Dunlap, C.A., Kim, S.J., Kwon, S.W., et al., Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics, Int. J. Syst. Evol. Microbiol., 2016. https://doi.org/10.1099/ijsem.0.000858
11. Ehrhardt, C.J., Chu, V., Brown, T., et al., Use of fatty acid methyl ester profiles for discrimination of Bacillus cereus T-strain spores grown on different media, Appl. Environ. Microbiol., 2010. https://doi.org/10.1128/AEM.02443-09
12. Fernandez-No, I.C., Bohme, K., Caamaco-Antelo, S., et al., Identification of single nucleotide polymorphisms (SNPs) in the 16S rRNA gene of foodborne Bacillus spp., Food Microbiol., 2015. https://doi.org/10.1016/j.fm.2014.08.010
13. Guinebretiere, M., Auger, S., Galleron, N., et al., Bacillus cytotoxicus sp. nov. is a new thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning, Int. J. Syst. Evol. Microbiol., 2013. https://doi.org/10.1099/ijs.0.030627-0
14. Hakovirta, J.R., Prezioso, S., Hodge, D., et al., Identification and analysis of informative single nucleotide polymorphisms in 16S rRNA gene sequences of the Bacillus cereus group, J. Clin. Microbiol., 2016. https://doi.org/10.1128/JCM.01267-16
15. Kaneda, T., Iso- and anteiso-fatty acids in bacteria: biosynthesis, function and taxonomic significance, Microbiol. Rev., 1991, vol. 55, pp. 288–302.
16. Lane, D.G., Nucleic acids techniques in bacterial systematic, in Stackebrandt, E. and Goodfellow, M., Eds., Chichester, United Kingdom: John Wiley, 1991, pp. 115–175.
17. Netrusov, A.I., Egorova, M.A., and Zakharchuk, L.M., Practice on Microbiology, Moscow: Academia, 2005.
18. Ngalimat, M.S. and Sabri, S., Taxonomic note: Speciation within the operational group Bacillus amyloliquefaciens based on comparative phylogenies of housekeeping genes, Asia-Pac. J. Mol. Biol. Biotechnol., 2020, vol. 28, pp. 19–26.
19. Ongena, M. and Jacques, P., Bacillus lipopeptides: versatile weapons for plant disease Biocontrol, Trends Microbiol., 2008. https://doi.org/10.1016/j.tim.2007.12.009
20. Petrackova, D., Vecer, J., Svobodova, J., et al., Long-term adaptation of Bacillus subtilis 168 to extreme pH affects chemical and physical properties of the cellular membrane, J. Membr. Biol., 2010. https://doi.org/10.1007/s00232-010-9226-9
21. Reva, O.N., Sorokulova, I.B., and Smirnov, V.V., Simplified technique for dentification of the aerobic spore-forming bacteria by phenotype, Int. J. Syst. Evol. Microbiol., 2001. https://doi.org/10.1099/00207713-51-4-1361
22. Ruiz-Garcia, C., Bejar, V., Martinez-Checa, F., et al., Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain, Int. J. Syst. Evol. Microbiol., 2005. https://doi.org/10.1099/ijs.0.63310-0
23. Safronova, L.A., Zelena, L.B., Klochko, V.V., et al., Does the applicability of Bacillus strains in probiotics rely upon their taxonomy, Can. J. Microbiol., 2012. https://doi.org/10.1139/w11-113
24. Shobharani, P. and Halami, P.M., Cellular fatty acid profile and H(+)-ATPase activity to assess acid tolerance of Bacillus sp. for potential probiotic functional attributes, Appl. Microbiol. Biotechnol., 2014. https://doi.org/10.1007/s00253-014-5981-3
25. Song, Y., Yang, R., Guo, Z., et al., Distinctness of spore and vegetative cellular fatty acid profiles of some aerobic endospore-forming Bacilli, J. Microbiol. Methods, 2000. https://doi.org/10.1016/S0167-7012(99)00123-2
26. Su, C., Lei, L., Duan, Y., et al., Culture-independent methods for studying environmental microorganisms: methods, application, and perspective, Appl. Microbiol. Biotechnol., 2012. https://doi.org/10.1007/s00253-011-3800-7
27. Suutari, M. and Laakso, S., Microbial fatty acids and thermal adaptation, Crit. Rev. Microbiol., 1994. https://doi.org/10.3109/10408419409113560
28. Tamura, K., Peterson, D., Peterson, N., et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011. https://doi.org/10.1093/molbev/msr121