Етанол – одна із найважливіших сполук, що широко використовується у медицині, фармакології, харчовій та паливній промисловості, косметології та інших галузях. Основним способом виробництва етанолу є бродіння з використанням пекарських дріжджів Saccharomyces cerevisiae. S. cerevisiae перетворюють глюкозу до етанолу дуже ефективно: вихід етанолу становить більш ніж 90 % від теоретичного максимуму. Однак навіть незначне підвищення виходу етанолу в процесі алкогольної ферментації в промислових масштабах може забезпечувати продукцію додаткових сотень мільйонів тон етанолу щороку. В даній роботі для підвищення продукції етанолу у промислових штамів S. cerevisiae ми застосували метод адаптивної еволюції: тривалого культивування в середовищі з високими концентраціями глюкози та етанолу. Більшість з отриманих адаптованих штамів характеризувалися підвищеною продукцією етанолу під час спиртового бродіння в порівнянні з вихідними штамами.
РЕЗЮМЕ. Этанол – одно из важнейших соединений, широко используется в медицине, фармакологии, пищевой и топливной промышленности, косметологии и других отраслях. Основным способом производства этанола является брожение с использованием пекарских дрожжей Saccharomyces cerevisiae. S. сerevisiae превращают глюкозу в этанол очень эффективно: выход этанола составляет более 90 % от теоретического максимума. Однако даже незначительное повышение выхода этанола в процессе алкогольной ферментации в промышленных масштабах может обеспечивать продукцию дополнительных сотен миллионов тонн этанола ежегодно. В данной работе для повышения продукции этанола в промышленных штаммов S. cerevisiae мы применили метод адаптивной эволюции: длительного культивирования в среде с высокими концентрациями глюкозы и этанола. Большинство из полученных адаптированных штаммов характеризовались повышенной продукцией этанола во время спиртового брожения по сравнению с исходными штаммами.
Ключові слова: етанол, спиртове бродіння, Saccharomyces cerevisiae, адаптивна еволюція
Повний текст та додаткові матеріали
Цитована література
1. Dmytruk K.V., Kurylenko O.O., Ruchala J., Abbas, C.A., and Sibirny A.A. Genetic Improvement of Conventional and Nonconventional Yeasts for the Production of First- and Second-Generation Ethanol, Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-58829-2_1
2. Basso, L.C. Basso, T.O., and Rocha, S.N., Ethanol Production in Brazil: The Industrial Process and Its Impact on Yeast Fermentation, InTech, 2011.
3. Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Liden, G., and Zacchi, G., Bio-ethanol—the fuel of tomorrow from the residues of today, Trends Biotechnol., 2006, vol. 24, no. 12, pp. 549–556. https://doi.org/10.1016/j.tibtech.2006.10.004
4. Dos Santos, M.A., Energy Analysis of Crops Used for Producing Ethanol and CO2 Emissions, The International Virtual Institute of Global Change (IVIG), 1997.
5. Douglas Crabb, W. and Mitchinson, C., Enzymes involved in the processing of starch to sugars, Trends Biotechnol., 1997, vol. 15, pp. 349–352. https://doi.org/10.1016/S0167-7799(97)01082-2
6. Madson, P.W. and Monceaux D.A., Fuel Ethanol Production, Nottingham: University Press, 1999.
7. Guo, Z.P., Zhang, L. Ding, Z.Y., and Shi, G.Y., Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance, Metab. Eng., 2011, vol. 13, no. 1, pp. 49–59. https://doi.org/10.1016/j.ymben.2010.11.003
8. Zhang, L., Tang, Y., Guo, Z.P., Ding, Z.Y., and Shi, G.Y., Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae,Biotechnol. Lett., 2011, vol. 33, no. 7, pp. 1375–1380. https://doi.org/10.1007/s10529-011-0588-6
9. Semkiv, M.V., Dmytruk, K.V., Abbas, C.A., and Sibirny, A.A., Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiae overexpressing alkaline phosphatase, BMC Biotechnol., 2014, vol. 14, p. 42. https://doi.org/10.1186/1472-6750-14-42
10. Semkiv, M.V., Dmytruk, K.V., Abbas, C.A., and Sibirny, A.A., Activation of futile cycles as an approach to increase ethanol yield during glucose fermentation in Saccharomyces cerevisiae, Bioengineered, 2016, vol. 7, no. 2, pp. 106–111. https://doi.org/10.1080/21655979.2016.1148223
11. Grossmann, M., Kießling, F., Singer, J., Schoeman, H., Schröder, M.-B., and von Wallbrunn, C., Genetically modified wine yeasts and risk assessment studies covering different steps within the wine making process, Ann. Microbiol., 2011, vol. 61, no. 1, pp. 103–115. https://doi.org/10.1007/s13213-010-0088-2
12. Chambers, P.J., Bellon, J.R., Schmidt, S.A., Varela, C., and Pretorius, I.S., Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications, Springer Netherlands, 2009. https://doi.org/10.1007/978-1-4020-8292-4_20
13. Cakar, Z.P., Seker, U.O., Tamerler, C., Sonderegger, M., and Sauer, U., Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae,FEMS Yeast Res., 2005, vol. 5, no. 6–7, pp. 569–578. https://doi.org/10.1016/j.femsyr.2004.10.010
14. Kuyper, M., Toirkens, M.J., Diderich, J.A., Winkler, A.A., van Dijken, J.P., and Pronk, J.T., Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain, FEMS Yeast Res., 2005, vol. 5, no. 10, pp. 925–934. https://doi.org/10.1016/j.femsyr.2005.04.004
15. Higgins, V.J., Bell, P.J., Dawes, I.W., and Attfield, P.V., Generation of a novel Saccharomyces cerevisiae strain that exhibits strong maltose utilization and hyperosmotic resistance using nonrecombinant techniques, App. Environ. Microbiol., 2001, vol. 67, no. 9, pp. 4346–4348. https://doi.org/10.1128/AEM.67.9.4346-4348.2001
16. Dmytruk K.V., Kshanovska, B.V., Abbas, C.A., and Sibirny, A.A., New methods for positive selection of yeast ethanol overproducing mutants, Bioethanol, 2016, vol. 2, pp. 24–31. https://doi.org/10.1515/bioeth-2015-0003
17. de Oliva-Neto, P., Dorta, C., Carvalho, A.F., de Lima, V.M.G., and da Silva, D.F., The Brazilian Technology of Fuel Ethanol Fermentation—Yeast Inhibition Factors and New Perspectives to Improve the Technology, ©FORMATEX, 2013.
18. Chapman, C. and Bartley, W., The kinetics of enzyme changes in yeast under conditions that cause the loss of mitochondria, Biochem. J., 1968, vol. 107, no. 4, pp. 455–465. https://doi.org/10.1042/bj1070455
19. Beaven, M.J., Charpentier, C., and Rose, A.H., Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC 431, Microbiology, 1982, vol. 128, no. 7, pp. 1447–1455. https://doi.org/10.1099/00221287-128-7-1447
20. Millar, D.G., Griffiths-Smith, K., Algar, E., and Scopes, R.K., Activity and stability of glycolytic enzymes in the presence of ethanol, Biotechnol. Lett., 1982, vol. 4, no. 9, pp. 601–606. https://doi.org/10.1007/BF00127792
21. Loureiro-Dias, M.C. and Peinado, J.M., Effect of ethanol and other alkanols on the maltose transport system of Saccharomyces cerevisiae,Biotechnol. Lett., 1982, vol. 4, no. 11, pp. 721–724. https://doi.org/10.1007/BF00-134666
22. Ingram, L.O., Adaptation of membrane lipids to alcohols, J. Bacteriol., 1976, vol. 125, no. 2, pp. 670–678. PMCID: PMC236128.
23. Moon, M.H., Ryu, J., Choeng, Y.-H., Hong, S.-K., Kang, H.A., and Chang, Y.K., Enhancement of stress tolerance and ethanol production in Saccharomyces cerevisiae by heterologous expression of a trehalose biosynthetic gene from Streptomyces albus,Biotechnol. Bioproc. Eng., 2012, vol. 17, no. 5, pp. 986–996. https://doi.org/10.1007/s12257-012-0148-5
24. Qiu, Z. and Jiang, R., Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7, Biotechnol. Biof., 2017, vol. 10, p. 125. https://doi.org/10.1186/s13068-017-0806-0
25. Jung, Y.J. and Park, H.D., Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae,Biotechnol. Lett., 2005, vol. 27, nos. 23–24, pp. 1855–1859. https://doi.org/10.1007/s10529-005-3910-3
26. Cao, T.S., Chi, Z., Liu, G.L., and Chi, Z.M., Expression of TPS1 gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp. W0 enhances trehalose accumulation, ethanol tolerance, and ethanol production, Mol. Biotechnol., 2014, vol. 56, no. 1, pp. 72–78. https://doi.org/10.1007/s12033-013-9683-3
27. Thammasittirong, S.N.-R., Thirasaktana, T., Thammasittirong, A., and Srisodsuk, M., Improvement of Ethanol Production by Ethanol-Tolerant Saccharomyces cerevisiae UVNR56, SpringerPlus, 2013. https://doi.org/10.1186/2193-1801-2-583
28. Argueso, J.L., Carazzolle, M.F., Mieczkowski, P.A., Duarte, F.M., Netto, O.V. Missawa, S.K., Galzerani, F., Costa, G.G., Vidal, R.O., Noronha, M.F., Dominska, M., Andrietta, M.G., Andrietta, S.R., Cunha, A.F., Gomes, L.H., Tavares, F.C., Alcarde, A.R., Dietrich, F.S., McCusker, J.H., Petes, T.D., and Pereira, G.A., Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production, Genome Res., 2009, vol. 19, no. 12, pp. 2258–2270. https://doi.org/10.1101/gr.091777.109
29. Lin, Y. and Tanaka, S., Ethanol fermentation from biomass resources: current state and prospects, Appl. Microbiol. Biotechnol., 2006, vol. 69, no. 6, pp. 627–642. https://doi.org/10.1007/s00253-005-0229-x
30. Esteve-Zarzoso, B., Belloch, C., Uruburu, F., and Querol, A., Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers, Int. J. Syst. Bacteriol., 1999, vol. 49, no. 1, pp. 329–337. https://doi.org/10.1099/00207713-49-1-329