РЕЗЮМЕ. Мета даного дослідження полягала у проведенні каріоморфологічного аналізу семи видів Passiflora (P. edulis, P. foetida, P. subpeltata, P. quadraqularis, P. ligularis, P. leschenaultii, and P. tripartitia). Ці види мають диплоїдний статус з різницею в кількості хромосом: P. edulis f. flavicarpa (2n = 18), P. foetida var. foetida (2n = 20), P. subpeltata (2n = 18), P. quadrangularis (2n = 18), P. ligularis (2n = 18), P. leschenaultii (2n = 18) та P. tripartita (2n = 18) з відчутними відмінностями щодо характеристик каріотипу, загальної довжини хромосоми (TCL) та сумарної довжини коротких плечей (TF%). Низькі значення TF% (38,05 %), які спостерігали у видів P. foetida, вказують на еволюційний розвиток виду. Ідіограми були розроблені на підставі відносної довжини хромосом.
Ключові слова: каріоморфологія, хромосоми, каріотип, ідіограма
Повний текст та додаткові матеріали
Цитована література
1. Cervi, A.C., Species of Passiflora L. (Passifloraceae) published and described during the last 55 years (1950–2005) in South America and in the main Brazilian Publications, Estud. Biol., 2005, vol. 27, no. 61, pp. 19–24.
2. Meletti, L., Soares-Scott, M.D., and Beracci, L.C., Phenotypic characterization in three selections of purple passion fruit (Passiflora edulis Sims.), Rev. Bra. frutic., 2005, vol. 27, no. 2, pp. 268–272. http://www.scielo.br/ scielo.php?pid=S0100-9452005000200020&script= sci_arttext.
3. Shekhawat, M.S., Kannan, N., Manokari, M., and Ravindran, CP., In vitro regeneration of shoots and ex vitro rooting of an important medicinal plant Passiflora foetida L. through nodal segment culture, Genet. Eng. Biotechn. N., 2015, vol. 12, no. 2, pp. 209–214. https://www.sciencedirect.com/science/article/pii/ S1687157X15000335.
4. Vandetplank, J., Passion Flowers and Passion Fruit, Cassel Publishers limited, 2000. https://www.cabdirect.org/cabdirect/abstract/19920311355.
5. Rushing, F. Tough Plants for Southern Gardens, Cool Spring Press, 2003. http://agris.fao.org/agris-search/ search.do?recordID=US201300091552.
6. Soares, T.L., de Jesus, O.N., de Souza, E.H., and de Oliveira, E.J., Reproductive biology and pollen pistil interactions in Passiflora species with ornamental potential, Sci. Horticult., 2015, vol. 197, no. 0, pp. 339–349. https://www.sciencedirect.com/science/article/ pii/S0304423815302090.
7. De Melo, C.A.F., Souza, M.M., Abreu, P.P., and Viana, A.J.C., Karyomorphology and GC-rich heterochromatin pattern in Passiflora (Passifloraceae) wild species from Decaloba and Passiflora subgenera, Flora—Morphology, Distribution, Funct. Ecol. Plants, 2014, vol. 209, no. 11, pp. 620–31. https://www.sciencedirect.com/science/article/pii/S0367253014001169.
8. Hansen, A.K., Gilbert, L.E. Simpson, B.B., Downie, S.R., Cervi, A.C., and Jansen, R.K., Phylogenetic relationships and chromosome number evolution in Passiflora,Syst. Bot., 2006, vol. 31, no. 1, pp. 138–150. https://www.ingentaconnect.com/content/aspt/sb/ 2006/00000031/00000001/art00013.
9. Stebbins, G.L., Chromosomal evolution in higher plants, in Chromosomal Evolution in Higher Plants, 1950. https://www.cabdirect.org/cabdirect/abstract/ 19711606614.
10. Silvia M., Cuco Maria Lucia C. Vieira, Mateus Mondin, and Margarida L.R., Aguiar-Perecin Comparative karyotype analysis of three Passiflora L. species and cytogenetic characterization of somatic hybrids. Caryologia, 2005, vol. 58, no. 3, pp. 220–228. https://www.tandfonline.com/doi/abs/10.1080/00087114.2005.10589454.
11. Das A.B., Mallick R. Variation in karyotype and nuclear DNA content in different varieties of Foeniculum vulgare Mill., Cytologia, 1989, vol. 54, no. 1, pp. 129–134. https://www.jstage.jst.go.jp/article/cytologia1929/54/1/ 54_1_129/_article/-char/ja/.
12. Shan F., Yan G., and Plummer J.A., Karyotype evolution in the genus Boronia (Rutaceae). Bot. J. Linnean Soc., 2003, vol. 142, no.3, pp. 309–320. https://www. cabdirect.org/cabdirect/abstract/20057005072.
13. Killip E.P. The American species of Passifloraceae. The American species of Passifloraceae., 1938. https://www. cabdirect.org/cabdirect/abstract/20057005072.
14. Ohdachi S., Dokuchaev N.E., Hasegawa M., and Masuda R. Intraspecific phylogeny and geographical variation of six species of north-eastern Asiatic Sorex shrews based on the mitochondrial cytochrome b sequences. Mol. Ecol., 2001, vol. 10, no. 9, pp. 2199–2213. https://doi.org/10.1046/j.1365-294X.2001.01359.x
15. Bhadra S., Bandyopadhyay M. New chromosome number counts and karyotype analyses in three important genera of Zingiberaceae. Nucleus, 2016, vol. 59, no. 1, pp. 35–40. https://link.springer.com/article/10.1007/ s13237-016-0162-7.
16. Zeng J., Wang D., Wu Y., Guo X., Zhang Y., and Lu X., Karyotype analysis of Gazania rigens varieties, Horticult. Plant J., 2016, vol. 2, no. 5, pp. 279–283. https://www.sciencedirect.com/science/article/pii/S2468014116301601.
17. Huziwara Y. Karyotype analysis in some genera of Compositae. VIII. Further studies on the chromosomes of Aster, Am. J. Bot., 1962, vol. 49, no. 2, pp. 116–119. https://doi.org/10.1002/j.1537-2197.1962.tb14916.x
18. De Melo, F., Cervi, A.C., and Guerra, M., Karyology and cytotaxonomy of the genus Passiflora L. (Passifloraceae), Plant System. Evol., 2001, vol. 226, no. 1, pp. 69–84. https://link.springer.com/article/10.1007/s006060170074.
19. Battaglia, E., Chromosome morphology and terminology (with 12 figures), Caryologia, 1955, vol. 8, no. 1, pp. 179–187. https://www.tandfonline.com/doi/pdf/ 10.1080/00087114.1955.10797556.
20. Iwatsubo, Y. and Naruhashi, N., Karyomorphological and cytogenetical studies of Rubus parvifolius, R. coreanus and R. × hiraseanus (Rosaceae), Cytologia, 1991, vol. 56, no. 1, pp. 151–156. https://doi.org/10.1508/cytologia.56.151
21. Naruhashi, N., Iwatsubo, Y., and Pen,g, C.I., Chromosome numbers in Rubus (Rosaceae) of Taiwan, Bot. Bull. Acad. Sin., 2002, p. 43.
22. Mandakova, T., Schranz, M.E., Sharbel, T.F., de Jon,g, H., and Lysak, M.A., Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes, Plant J., 2015, vol. 82, no. 5, pp. 785–793. https://doi.org/10.1111/tpj.12849
23. Sassone, A.B., López, A., Hojsgaard, D.H., and Giussani, L.M., A novel indicator of karyotype evolution in the tribe Leucocoryneae (Allioideae, Amaryllidaceae), J. Plant Res., 2018, vol. 131, no. 2, pp. 211–223. https://doi.org/10.1007/s10265-017-0987-4
24. De Storme, N. and Mason, A., Plant speciation through chromosome instability and ploidy change: cellular mechanisms, molecular factors and evolutionary relevance, Cur. Plant Biol., 2014, vol. 1, pp. 10–33. https://doi.org/10.1016/j.cpb.2014.09.002
25. Storey, W.B., Chromosome numbers of some species of Passiflora occurring in Hawaii, 1950. https://scholarspace.manoa.hawaii.edu/bitstream/10125/8988/vol4n1-37-42.pdf.
26. De Souza, M.M., Pereira, T.N.S., and Vieira, M.L.C., Cytogenetic studies in some species of Passiflora L. (Passifloraceae): a review emphasizing Brazilian species, Braz. Arch. Biol. Technol., 2008, vol. 51, no. 2, pp. 247–258. https://doi.org/10.1590/S1516-89132008000200003
27. de Souza, M.M., Pereira, T.N.S., da Cruz Silva, L., da Silva Reis, D.S., and Sudré, C.P., Karyotype of six Passiflora species collected in the state of Rio de Janeiro, Cytologia, 2003, vol. 68, no. 2, pp. 165–171. https://doi.org/10.1508/cytologia.68.165
28. Silvia, M.C., Vieira, M.L.C., Mondin, M., and Aguiar-Perecin, M.L., Comparative karyotype analysis of three Passiflora L. species and cytogenetic characterization of somatic hybrids, Caryologia, 2005, vol. 58, no. 3, p. 2208. https://doi.org/10.1080/00087114.2005.10589454
29. Ahirwar, R.A.M.E.S.H. and Verma, R.C., Karyotypic studies in some members of Liliaceae, J. Cytol. Genet., 2014, vol. 15, pp. 61–74. http://socg.in/jrnls/2014/part2.pdf.
30. Viana, A.J.C. and Souza, M.M., Comparative cytogenetics between the species Passiflora edulis and Passiflora cacaoensis,Plant Biol., 2012, vol. 14, no. 5, pp. 820–827. https://doi.org/10.1111/j.1438-8677.2011.00557.x
31. Gg de Belo, G.O., Souza, M.M., de Souza, V.O., and de Melo, C.A.F., Reproductive and cytogenetic characterization in Passiflora sublanceolata,Biologia, 2015, vol. 70, no. 6, pp. 733–743. https://doi.org/10.1515/biolog-2015-0089
32. Yanaka, N., Kotera, J., Ohtsuka, A., Akatsuka, H., Imai, Y., Michibata, H., and Omori, K., Expression, structure and chromosomal localization of the human c GMP binding c GMP specific phosphodiesterase PDE5A gene, Eur. J. Biochem., 1998, vol. 255, no. 2, pp. 391–399. https://doi.org/10.1046/j.1432-1327.1998.2550391.x
33. Malik, A. and Srivastava, A.K., The fine structure of safflower (Carthamus tinctorius L.) chromosomes as revealed by pachytene analysis, Cytologia, 2009, vol. 74, no. 3, pp. 289–293. https://doi.org/10.1508/cytologia.74.289
34. El-Esawi, M.A. and Sammour, R., Karyological and phylogenetic studies in the genus Lactuca L. (Asteraceae), Cytologia, 2014, vol. 79, no. 2, pp. 269–275. https://doi.org/10.1508/cytologia.79.269
35. Mandakova, T. and Lysak, M.A., Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae), Plant Cell, 2008, vol. 20, no. 10, pp. 2559–2570. https://doi.org/10.1105/tpc.108.062166
36. Gill, B.S., Friebe, B., and Endo, T.R., Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum), Genome, 1991, vol. 34, no. 5, pp. 830–839. https://doi.org/10.1139/g91-128