Цитологія і генетика 2025, том 59, № 1, 86-88
Cytology and Genetics 2025, том 59, № 1, 115–126, doi: https://www.doi.org/10.3103/S0095452725010153

Cx32 cellular localization is related to epithelial to mesenchymal transition in breast cells

Unal Y.C., Oz S., Turan F.B., Yondem E., Pesen­okvur D., Yalcin­ozuysal O., Ozcivici E., Mese G.

  1. Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, 35430, Urla, Izmir, Turkey
  2. Izmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35430, Urla, Izmir, Turkey

РЕЗЮМЕ. Конексини (Cx) відіграють у клітинах роль, яка і пов’язана з щілинними контактами, і незалежна від них, і їхня локалізація має важливе значення для їхньої функції в клітинних процесах. Окрім мембранної локалізації, конексини також можуть бути локалізовані в цитоплазмі та ядрі, особливо в ракових клітинах. На різних стадіях раку спостерігається диференційована локалізація конексинів, включно з Cx32. Cx32 був підвищений і спостерігався в цитоплазмі клітин у лімфатичних вузлах метастазів зразків раку молочної залози порівняно з первинними пухлинами. Однак, значення підвищення експресії Cx32 та зміни клітинної локалізації Cx32 при епітеліально­мезенхімальному переході (ЕМП) невідоме. Щоб визначити, чи протягом одного тижня надмірна експресія та/або локалізація Cx32 індукує процес ЕМП, ми спочатку дослідили клітинну ло­калізацію Cx32 у клітинах MCF10A та MDA­MB­231 у різні часові точки, використовуючи Вестерн­блот та RT­ПЛР, а також імунофарбування за допомогою конфокальної мікроскопії. Потім ми співвіднесли зміни експресії та локалізації Cx32 з експресією маркерів ЕМП. Ми показали, що Cx32 має змінену клітинну локалізацію, а гіперекспресія Cx32 підвищує рівень Slug, тоді як експресію E­кадгерину та Snail в MDA­MB­231 знижує впродовж 7 днів. На противагу цьому, в клітинах MCF10A­Cx32 експресія E­кадгерину та віментину знижувалась порівняно з контролем впродовж 7 днів, а експресія ядерного Cx32 та Zeb2 в клітинах MCF10A була подібною до контролю. Отримані результати свідчать про раніше невідомий зв’язок між Cx32 та регуляцією процесу ЕМП, який залежить від часу.

Ключові слова: рак молочної залози, конексин32, епітеліально­мезенхімальний перехід, ядро, локалізація

Цитологія і генетика
2025, том 59, № 1, 86-88

Current Issue
Cytology and Genetics
2025, том 59, № 1, 115–126,
doi: 10.3103/S0095452725010153

Повний текст та додаткові матеріали

Цитована література

Aasen, T., Johnstone, S., Vidal-Brime, L., et al., Connexins: synthesis, post-translational modifications, and trafficking in health and disease, Int. J. Mol. Sci., 2018, vol. 19, p. 1296. https://doi.org/10.3390/ijms19051296

Adak, A., Unal, Y.C., Yucel, S., et al., Connexin 32 induces pro-tumorigenic features in MCF10A normal breast cells and MDA-MB-231 metastatic breast cancer cells, Biochim. Biophys. Acta, Mol. Cell Res., 2020, vol. 1867, p. 118851. https://doi.org/10.1016/j.bbamcr.2020.118851

Alaei, S.R., Abrams, C.K., Bulinski, J.C., et al., Acetylation of C-terminal lysines modulates protein turnover and stability of Connexin-32, BMC Cell Biol., 2018, vol. 19, p. 22. https://doi.org/10.1186/s12860-018-0173-0

Ali, A.A.H., Stahr, A., Ingenwerth, M., et al., Connexin30 and Connexin43 show a time-of-day dependent expression in the mouse suprachiasmatic nucleus and modulate rhythmic locomotor activity in the context of chronodisruption, Cell Commun. Signal., 2019, vol. 17, p. 61. https://doi.org/10.1186/s12964-019-0370-2

Barrallo-Gimeno, A. and Nieto, M.A., The Snail genes as inducers of cell movement and survival: implications in development and cancer, Development, 2005, vol. 132, pp. 3151–3161. https://doi.org/10.1242/dev.01907

Bray, F., Laversanne, M., Sung, H., et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, Ca-Cancer J. Clin., 2024, vol. 74, pp. 229–263. https://doi.org/10.3322/caac.21834

Chang, J., Clark, G.M., Allred, D.C., et al., Survival of patients with metastatic breast carcinoma, Cancer, 2003, vol. 97, pp. 545–553. https://doi.org/10.1002/cncr.11083

Dang, X., Doble, B.W., and Kardami, E., The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth, Mol. Cell Biochem., 2003, vol. 242, pp. 35–38.

Davis, F.M., Stewart, T.A., Thompson, E.W., and Monteith, G.R., Targeting EMT in cancer: opportunities for pharmacological intervention, Trends Pharmacol. Sci., 2014, vol. 35, pp. 479–488. https://doi.org/10.1016/j.tips.2014.06.006

Dbouk, H.A., Mroue, R.M., El-Sabban, M.E., and Talhouk, R.S., Connexins: a myriad of functions extending beyond assembly of gap junction channels, Cell Commun. Signal., 2009, vol. 7, p. 4. https://doi.org/10.1186/1478-811X-7-4

Dillekås, H., Rogers, M.S., and Straume, O., Are 90% of deaths from cancer caused by metastases?, Cancer Med., 2019, vol. 8, pp. 5574–5576. https://doi.org/10.1002/cam4.2474

Fardi, M., Alivand, M., Baradaran, B., et al., The crucial role of ZEB2: From development to epithelial-to-mesenchymal transition and cancer complexity, J. Cell. Physiol., 2019, vol. 234, pp. 14783–14799. https://doi.org/10.1002/jcp.28277

Gunyuz, Z.E., Sahi-Ilhan, E., Kucukkose, C., et al., SEMA6D Differentially Regulates Proliferation, Migration, and Invasion of Breast Cell Lines, ACS Omega, 2022, vol. 7, pp. 15769–15778. https://doi.org/10.1021/acsomega.2c00840

Hou, X., Khan, M.R.A., Turmaine, M., et al., Wnt signaling regulates cytosolic translocation of connexin 43, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2019, vol. 317, pp. R248–R261. https://doi.org/10.1152/ajpregu.00268.2018

James, C.C., Zeitz, M.J., Calhoun, P.J., et al., Altered translation initiation of Gja1 limits gap junction formation during epithelial–mesenchymal transition, Mol. Biol. Cell, 2018, vol. 29, pp. 797–808. https://doi.org/10.1091/mbc.E17-06-0406

Jamieson, S., Going, J.J., D’Arcy, R., and George, W.D., Expression of gap junction proteins connexin 26 and connexin 43 in normal human breast and in breast tumours, J. Pathol., 1998, vol. 184, pp. 37–43. https://doi.org/10.1002/(SICI)1096-9896(199801)184:1<37::AID-PATH966>3.0.CO;2-D

Kanczuga-Koda, L., Sulkowska, M., Koda, M., et al., Increased expression of gap junction protein—connexin 32 in lymph node metastases of human ductal breast cancer, Folia Histochem. Cytobiol., 2007, vol. 45, suppl. 1, pp. S170–S180

Kotini, M., Barriga, E.H., Leslie, J., et al., Gap junction protein Connexin-43 is a direct transcriptional regulator of N-cadherin in vivo, Nat. Commun., 2018, vol. 9, p. 3846. https://doi.org/10.1038/s41467-018-06368-x

Kwon, S., Han, S., and Kim, K., Differential response of MDA‑MB‑231 breast cancer and MCF10A normal breast cells to cytoskeletal disruption, Oncol. Rep., 2023, vol. 50, p. 200. https://doi.org/10.3892/or.2023.8637

Laird, D.W., Fistouris, P., Batist, G., et al., Deficiency of connexin43 gap junctions is an independent marker for breast tumors, Cancer Res., 1999, vol. 59, pp. 4104–10

Larson, D.M., Wrobleski, M.J., Sagar, G.D., et al., Differential regulation of connexin43 and connexin37 in endothelial cells by cell density, growth, and TGF-beta1, Am. J. Physiol. Physiol., 1997, vol. 272, pp. C405–C415. https://doi.org/10.1152/ajpcell.1997.272.2.C405

Lee, S.W., Tomasetto, C., and Sager, R., Positive selection of candidate tumor-suppressor genes by subtractive hybridization, Proc. Natl. Acad. Sci. U. S. A., 1991, vol. 88, pp. 2825–2829. https://doi.org/10.1073/pnas.88.7.2825

Lee, S.W., Tomasetto, C., Paul, D., et al., Transcriptional downregulation of gap-junction proteins blocks junctional communication in human mammary tumor cell lines, J. Cell Biol., 1992, vol. 118, pp. 1213–1221. https://doi.org/10.1083/jcb.118.5.1213

Lee, J.M., Hammarén, H.M., Savitski, M.M., and Baek, S.H., Control of protein stability by post-translational modifications, Nat. Commun., 2023, vol. 14, p. 201. https://doi.org/10.1038/s41467-023-35795-8

Li, Q., Omori, Y., Nishikawa, Y., et al., Cytoplasmic accumulation of connexin32 protein enhances motility and metastatic ability of human hepatoma cells in vitro and in vivo, Int. J. Cancer, 2007, vol. 121, pp. 536–546. https://doi.org/10.1002/ijc.22696

Locke, D., Stein, T., Davies, C., et al., Altered permeability and modulatory character of connexin channels during mammary gland development, Exp. Cell Res., 2004, vol. 298, pp. 643–660. https://doi.org/10.1016/j.yexcr.2004.05.003

Locke, D., Koreen, I.V., Harris, A.L., et al., Isoelectric points and post-translational modifications of connexin26 and connexin32, FASEB J., 2006, vol. 20, pp. 1221–1223. https://doi.org/10.1096/fj.05-5309fje

Lu, J., Wu, T., Zhang, B., et al., Types of nuclear localization signals and mechanisms of protein import into the nucleus, Cell Commun. Signal., 2021, vol. 19, p. 60. https://doi.org/10.1186/s12964-021-00741-y

Meşe, G., Richard, G., and White, T.W., Gap junctions: basic structure and function, J. Invest. Dermatol., 2007, vol. 127, pp. 2516–24. https://doi.org/10.1038/sj.jid.5700770

Nardozzi, J.D., Lott, K., and Cingolani, G., Phosphorylation meets nuclear import: a review, Cell Commun. Signal., 2010, vol. 8, p. 32. https://doi.org/10.1186/1478-811X-8-32

Polontchouk, L.O., Valiunas, V., Haefliger, J.-A., et al., Expression and regulation of connexins in cultured ventricular myocytes isolated from adult rat hearts, Pflugers Arch., 2002, vol. 443, pp. 676–689. https://doi.org/10.1007/s00424-001-0747-z

Qin, J., Chang, M., Wang, S., et al., Connexin 32-mediated cell-cell communication is essential for hepatic differentiation from human embryonic stem cells, Sci. Rep., 2016, vol. 6, p. 37388. https://doi.org/10.1038/srep37388

Ray, A. and Mehta, P.P., Cysteine residues in the C-terminal tail of connexin32 regulate its trafficking, Cell Signal., 2021, vol. 85, p. 110063. https://doi.org/10.1016/j.cellsig.2021.110063

Renthal, N.E., Chen, C.-C., Williams, K.C., et al., miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 20828–20833. https://doi.org/10.1073/pnas.1008301107

Singal, R., Tu, Z.J., Vanwert, J.M., et al., Modulation of the connexin26 tumor suppressor gene expression through methylation in human mammary epithelial cell lines, Anticancer Res., 2000, vol. 20, pp. 59–64.

Sinyuk, M., Mulkearns-Hubert, E.E., Reizes, O., and Lathia, J., Cancer connectors: connexins, gap junctions, and communication, Front. Oncol., 2018, vol. 8. https://doi.org/10.3389/fonc.2018.00646

Skrypek, N., Goossens, S., De Smedt, E., et al., Epithelial-to-mesenchymal transition: epigenetic reprogramming driving cellular plasticity, Trends Genet., 2017, vol. 33, pp. 943–959. https://doi.org/10.1016/j.tig.2017.08.004

Stauch, K., Kieken, F., and Sorgen, P., Characterization of the structure and intermolecular interactions between the connexin 32 carboxyl-terminal domain and the protein partners synapse-associated protein 97 and calmodulin, J. Biol. Chem., 2012, vol. 287, pp. 27771–27788. https://doi.org/10.1074/jbc.M112.382572

Teleki, I., Szasz, A.M., Maros, M.E., et al., Correlations of differentially expressed gap junction connexins Cx26, Cx30, Cx32, Cx43 and Cx46 with breast cancer progression and prognosis, PLoS One, 2014, vol. 9, p. e112541. https://doi.org/10.1371/journal.pone.0112541

Thiagarajan, P.S., Sinyuk, M., Turaga, S.M., et al., Cx26 drives self-renewal in triple-negative breast cancer via interaction with NANOG and focal adhesion kinase, Nat. Commun., 2018, vol. 9, p. 578. https://doi.org/10.1038/s41467-018-02938-1

Thiery, J.P., Epithelial–mesenchymal transitions in tumour progression, Nat. Rev. Cancer, 2002, vol. 2, pp. 442–454. https://doi.org/10.1038/nrc822

Thompson, E.A., Graham, E., MacNeill, C.M., et al., Differential response of MCF7, MDA-MB-231, and MCF 10A cells to hyperthermia, silver nanoparticles and silver nanoparticle-induced photothermal therapy, Int. J. Hyperthermia, 2014, vol. 30, pp. 312–323. https://doi.org/10.3109/02656736.2014.936051

Unal, Y.C., Yavuz, B., Ozcivici, E., and Mese, G., The role of connexins in breast cancer: from misregulated cell communication to aberrant intracellular signaling, Tissue Barriers, 2022, vol. 10, p. 1962698. https://doi.org/10.1080/21688370.2021.1962698

Vandewalle, C., SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions, Nucleic Acids Res., 2005, vol. 33, pp. 6566–6578. https://doi.org/10.1093/nar/gki965

Wang, Y. and Zhou, B.P., Epithelial-mesenchymal transition in breast cancer progression and metastasis, Chin. J. Cancer, 2011, vol. 30, pp. 603–611. https://doi.org/10.5732/cjc.011.10226

Xiang, Y., Wang, Q., Guo, Y., et al., Cx32 exerts anti-apoptotic and pro-tumor effects via the epidermal growth factor receptor pathway in hepatocellular carcinoma, J. Exp. Clin. Cancer Res., 2019, vol. 38, p. 145. https://doi.org/10.1186/s13046-019-1142-y

Xu, J., Lamouille, S., and Derynck, R., TGF-β-induced epithelial to mesenchymal transition, Cell Res., 2009, vol. 19, pp. 156–172. https://doi.org/10.1038/cr.2009.5

Yang, Y., Zhang, N., Zhu, J., et al., Downregulated connexin32 promotes EMT through the Wnt/β-catenin pathway by targeting Snail expression in hepatocellular carcinoma, Int. J. Oncol., 2017, vol. 50, pp. 1977–1988. https://doi.org/10.3892/ijo.2017.3985

Yousefi, H., Maheronnaghsh, M., Molaei, F., et al., Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance, Oncogene, 2020, vol. 39, pp. 953–974. https://doi.org/10.1038/s41388-019-1040-y

Zeng, S., Lin, X., Liu, J., and Zhou, J., Hypoxia‑induced internalization of connexin 26 and connexin 43 in pulmonary epithelial cells is involved in the occurrence of non‑small cell lung cancer via the P53/MDM2 signaling pathway, Int. J. Oncol., 2019. https://doi.org/10.3892/ijo.2019.4867

Zhang, Z., Li, H., Liu, X., et al., Circadian clock control of connexin36 phosphorylation in retinal photoreceptors of the CBA/CaJ mouse strain, Vis. Neurosci., 2015, vol. 32, p. E009. https://doi.org/10.1017/S0952523815000061

Zhang, Y., Tao, L., Fan, L., et al., Cx32 mediates cisplatin resistance in human ovarian cancer cells by affecting drug efflux transporter expression and activating the EGFR‑Akt pathway, Mol. Med. Rep., 2019. https://doi.org/10.3892/mmr.2019.9876

Zhao, Y., Lai, Y., Ge, H., et al., Non-junctional Cx32 mediates anti-apoptotic and pro-tumor effects via epidermal growth factor receptor in human cervical cancer cells, Cell Death Dis., 2017, vol. 8, pp. e2773–e2773. https://doi.org/10.1038/cddis.2017.183

Zhou, J.Z. and Jiang, J.X., Gap junction and hemichannel-independent actions of connexins on cell and tissue functions—An update, FEBS Lett., 2014, vol. 588, pp. 1186–1192. https://doi.org/10.1016/j.febslet.2014.01.001