Цитологія і генетика 2024, том 58, № 5, 96-98
Cytology and Genetics 2024, том 58, № 5, 493–504, doi: https://www.doi.org/10.3103/S009545272405013X

Characterization and gene expression patterns of calpain family in striped catfish

Trang T.H.T., Nhung T.H.N., Hai-Anh V., Hoang S.T., Binh T.N.L., Phuc H.T., Oanh T.P.K.

  1. Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str, Cau Giay, Hanoi, Vietnam
  2. Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str, Cau Giay, Hanoi, Vietnam
  3. Research Institute of Aquaculture, No.2, 116 Nguyen Dinh Chieu Str, District 1, Ho Chi Minh City, Vietnam

РЕЗЮМЕ. Кальпаїни – це залежні від кальцію внутрішньо­клітинні нейтральні цистеїнові протеази, відомі своєю важливою роллю, яку вони відіграють у post mortem протеолізі та тендеризації м’яса риби. У цьому дослідженні було проведено вивчення характеристик родини кальпаїнів (CAPN) у пангасіанодона великоокого (Pangasianodon hypophthalmus), який є одним із основних видів, використовуваних у рибоводному господарстві В’єтнаму. Спочатку було проведено пошук родини кальпаїнів у базі даних геному сомів, потім аналіз класифікації, філогенетичних відносин і структури гену. Було виявлено, що в геномі пангасіанодона великоокого 14 кальпаїнів є ортологами для інших видів хребетних, і проведено їхню класифікацію з поділом на типові та атипові кальпаїни згідно з їхньою структурою. Далі було проведено вивчення експресії транскрипційних генів, типових генів CAPN­1, ­2, ­3, ­11, ­13, у тканинах м’язів, печінки і мозку пангасіанодона великоокого. Результати продемонстрували, що експресія генів CAPN­2 і CAPN­13 була ледь помітною, у той час як експресія генів CAPN­1, ­3, ­11 була значною і спостерігалась у всіх трьох типах тканин. У тканині м’язів пангасіа­нодона великоокого наявність транскрипту CAPN­3 майже втричі та у 27 разів перевищувала показники CAPN­11 і CAPN­1, відповідно. Наші результати дозволяють припустити, що CAPN­3 у P. hypophthalmus також є кальпаїном, характерним для м’язів, як було відмічено у повідомленнях щодо інших видів. Результати цього дослідження надають дані для подальшого вивчення кальпаїнів та їхнього ге­нетичного різноманіття, яке може корелювати з текстурою м’язів пангасіанодона великоокого.

Ключові слова: родина кальпаїнів, CAPN, профіль експресії, Pangasianodon hypophthalmus, пангасіанодон великооки

Цитологія і генетика
2024, том 58, № 5, 96-98

Current Issue
Cytology and Genetics
2024, том 58, № 5, 493–504,
doi: 10.3103/S009545272405013X

Повний текст та додаткові матеріали

Цитована література

Ahmed, Z., Donkor, O., Street, W.A., and Vasiljevic, T., Calpains- and cathepsins-induced myofibrillar changes in post-mortem fish: Impact on structural softening and release of bioactive peptides, Trends Food Sci. Techn-ol., 2015, vol. 45, pp. 130–146. https://doi.org/10.1016/j.tifs.2015.04.002

Beckmann, J.S. and Spencer, M., Calpain 3, the “gatekeeper” of proper sarcomere assembly, turnover and maintenance, Neuromuscular Disord., 2008, vol. 18, pp. 913–921. https://doi.org/10.1016/j.nmd.2008.08.005

Chaudhry, B., Hanif, F., and Saboohi, K., Molecular signatures of Calpain 10 isoforms sequences, envisage functional similarity and therapeutic potential, Pak. J. Pharm. Sci., 2019, vol. 32, pp. 937–946. Coomer, C.E. and Morris, A.C., Capn5 expression in the healthy and regenerating zebrafish retina, Invest. Ophthalmol. Visal Sci., 2018, vol. 59, pp. 3643–3654. https://doi.org/10.1167/iovs.18-24278

Coomer, C.E. and Morris, A.C., Capn5 expression in the healthy and regenerating zebrafish retina, Invest. Ophthalmol. Visal Sci., 2018, vol. 59, pp. 3643–3654. https://doi.org/10.1167/iovs.1824278

FAO, The state of world fisheries and aquaculture, 2022. Accessed May 22, 2022.https://doi.org/10.4060/cc0461en

Fletcher, R., Catfish can be key drivers of global aquaculture growth, The Fish Site. https://thefishsite.com/articles/catfish–can–be–key–drivers–of–global–aquaculture–growth. Accessed October 8, 2020.

Goll, D.E., Thompson, V.F., Li, H., Wei, W., and Cong, J., The calpain system, Physiol. Rev., 2003, vol. 83, pp. 731–801. https://doi.org/10.1152/physrev.00029.2002

Hoegg, S., Brinkmann, H., Taylor, J.S., and Meyer A., Phylogenetic timing of the fish–specific genome duplication correlates with the diversification of teleost fish, J. Mol. Evol., 2004, vol. 59, pp. 190–203. https://doi.org/10.1007/s00239-004-2613-z

Hwang, S.D., Choi, K.–M., Hwang, J.Y., Kwon, M.–G., Jeong, J.–M., Seo, J.S., Jee, B.–Y. and Park, C.–I., Molecular genetic characterisation and expression profiling of calpain 3 transcripts in red sea bream (Pagrus major), Fish Shellfish Immunol., 2020, vol. 98, pp. 19–24. https://doi.org/10.1016/j.fsi.2019.12.090

Johnston, I.A., Bower, N.I., and Macqueen, D.J., Growth and the regulation of myotomal muscle mass in teleost fish, J. Exp. Biol., 2011, vol. 214, pp. 1617–1628. https://doi.org/10.1242/jeb.038620

Kantserova, N.P., Lysenko, L.A., Veselov, A.E., and Nemova, N.N., Protein degradation systems in the skeletal muscles of parr and smolt Atlantic salmon Salmo salar L. and brown trout Salmo trutta L., Fish Physiol. Biochem., 2017, vol. 43, pp. 1187–1194. http://doi.org/10.1007/s10695-017-0364-1

Kim, O.T.P., Nguyen, P.T., Shoguchi, E., Hisata, K., Vo, T.T.B., Inoue, J., Shinzato, C., Le, B.T.N., Nishitsuji, K., Kanda, M., Nguyen, V.H., Nong, H.V., and Satoh, N., A draft genome of the striped catfish, Pangasianodon hypophthalmus, for comparative analysis of genes relevant to development and a resource for aquaculture improvement, BMC Genomics, 2018, vol. 19, p. 733. http://doi.org/10.1186/s12864-018-5079-x

Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, pp. 1870–1874. https://doi.org/10.1093/molbev/msw054

Lavajoo, F., Perelló–Amorós, M., Vélez, E.J., Sánchez–Moya, A., Balbuena–Pecino, S., Riera–Heredia, N., Fernández–Borràs, J., Blasco, J., Navarro, I., Capilla, E., and Gutiérrez, J., Regulatory mechanisms involved in muscle and bone remodeling during refeeding in gilthead sea bream, Sci. Rep., 2020, vol. 10, p. 184. http://doi.org/10.1038/s41598-019-57013-6

Lee, H.L., Santé–Lhoutellier, V., Vigouroux, S., Briand, Y., and Briand, M., Calpain specificity and expression in chicken tissues, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2007, vol. 146, pp. 88–93. https://doi.org/10.1016/j.cbpb.2006.09.006

Lepage, S.E. and Bruce, A.E.E., Characterization and comparative expression of zebrafish calpain system genes during early development, Dev. Dyn., 2008, vol. 237, pp. 819–829. https://doi.org/10.1002/dvdy.21459

Macqueen, D.J., Meischke, L., Manthri, S., Anwar, A., Solberg, C., and Johnston, I.A., Characterisation of capn1, capn2–like, capn3 and capn11 genes in Atlantic halibut (Hippoglossus hippoglossus L.): Transcriptional regulation across tissues and in skeletal muscle at distinct nutritional states, Gene, 2010a, vol. 453, pp. 45–58. https://doi.org/10.1016/j.gene.2010.01.002

Macqueen, D.J., Delbridge, M.L., Manthri, S., and Johnston, I.A., A newly classified vertebrate calpain protease, directly ancestral to CAPN1 and 2, episodically evolved a restricted physiological function in placental mammals, Mol. Biol. Evol., 2010b, vol. 27, pp. 1886–1902. https://doi.org/10.1093/molbev/msq071

Macqueen, D.J. and Wilcox, A.H., Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses, Open Biol., 2014, vol. 4, p. 130219. https://doi.org/10.1098/rsob.130219

Ndandala, C.B., Dai, M., Mustapha, U.F., Li, X., Liu, J., Huang, H., Li, G., and Chen, H., Current research and future perspectives of GH and IGFs family genes in somatic growth and reproduction of teleost fish, Aquacult. Rep., 2022, vol. 26, p. 101289. https://doi.org/10.1016/j.aqrep.2022.101289

Nguyen, S.V., Genetic parameters of filet yield and body traits on river catfish (Pangasianodon hypophthalmus) in Vietnam, Aquaculture, 2007, vol. 272, p. 295. https://doi.org/10.1016/j.aquaculture.2007.07.150

Nguyen, S.V., Klemetsdal, G., Ødegård, J., and Gjøen, H.M., Genetic parameters of economically important traits recorded at a given age in striped catfish (Pangasianodon hypophthalmus), Aquaculture, 2012, vols. 344–349, pp. 82–89. https://doi.org/10.1016/j.aquaculture.2012.03.013

Ono, Y., Ojima, K., Shinkai–Ouchi, F., Hata, S., and Sorimachi, H., An eccentric calpain, CAPN3/p94/calpain–3, Biochimie, 2016, vol. 122, pp. 169–187. https://doi.org/10.1016/j.biochi.2015.09.010

Ono, Y. and Sorimachi, H., Amino acid sequence alignment of vertebrate CAPN3/calpain–3/p94, Data Brief, 2015, vol. 5, pp. 366–367. https://doi.org/10.1016/j.dib.2015.09.021

Ookura, T., Koyama, E., Hansen, A., Teeter, J.H., Kawamura, Y., and Brand, J.G., Phylogenetic analysis and taste cell expression of Calpain 9 in catfish (Ictalurus punctatus), Nat. Sci., 2015, vol. 7, p. 8. https://doi.org/10.4236/ns.2015.73016

Paysan–Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B., Salazar, G., Bileschi, M., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D., Letunić, I., Marchler–Bauer, A., Mi, H., Natale, D., Orengo, C., Pandurangan, A., Rivoire, C., Sigrist, C., Sillitoe, I., Thanki, N., Thomas, P., Tosatto, S., Wu, C., and Bateman, A., InterPro in 2022, Nucleic Acids. Res., 2022, vol. 51, no. D1, pp. D418–D427. https://doi.org/10.1093/nar/gkac993

Preziosa, E., Liu, S., Terova, G., Gao, X., Liu, H., Kucuktas, H., Terhune, J., and Liu, Z., Effect of nutrient restriction and re–feeding on calpain family genes in skeletal muscle of channel catfish (Ictalurus punctatus), PLoS One, 2013, vol. 8, p. e59404. http://doi.org/ Prykhozhij, S.V., Caceres, L., Ban, K., Cordeiro–Santanach, A., Nagaraju, K., Hoffman, E.P., and Berman, J.N., Loss of calpain3b in zebrafish, a model of limb–girdle muscular dystrophy, increases susceptibility to muscle defects due to elevated muscle activity, Genes, 2023, vol. 14, p. 492. https://doi.org/10.3390/genes1402049210.3390/genes14020492https://doi.org/10.1371/journal.pone.0059404

Radaelli, G., Rowlerson, A., Mascarello, F., Patruno, M., and Funkenstein, B., Myostatin precursor is present in several tissues in teleost fish: a comparative immunolocalization study, Cell Tissue Res., 2003, vol. 311, pp. 239–250. https://doi.org/10.1007/s00441-002-0668-y

Saitou, N. and Nei, M., The neighbor–joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Salem, M., Nath, J., Rexroad, C.E., Killefer, J., and Yao, J., Identification and molecular characterization of the rainbow trout calpains (Capn1 and Capn2): their expression in muscle wasting during starvation, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2005, vol. 140, pp. 63–71. https://doi.org/10.1016/j.cbpc.2004.09.007

Salmerón, C., Garcia de la serrana, D., Jiménez–Amilburu, V., Fontanillas, R., Navarro, I., Johnston, I., Gutierrez, J., and Capilla, E., Characterisation and expression of calpain family members in relation to nutritional status, diet composition and flesh texture in gilthead sea bream (Sparus aurata), PloS One, 2013, vol. 8, p. e75349. https://doi.org/10.1371/journal.pone.0075349

Schmittgen, T.D. and Livak, K.J., Analyzing real–time PCR data by the comparative C T method, Nat. Protoc., 2008, vol. 3, pp. 1101–1108. https://doi.org/10.1038/nprot.2008.73

Sorimachi, H., Hata, S., and Ono, Y., Calpain chronicle–an enzyme family under multidisciplinary characterization, Proc. Jpn. Acad., Ser. B, 2011, vol. 87, pp. 287–327. https://doi.org/10.2183/pjab.87.287

Spinozzi, S., Albini, S., Best, H., and Richard, I., Calpains for dummies: What you need to know about the calpain family, Biochim. Biophys. Acta, Proteins. Proteomics, 2021, vol. 1869, p. 140616. https://doi.org/10.1016/j.bbapap.2021.140616

Tan, N.D., Tuyen, V.T.X., Ha, H.T.N., and Dao, D.T.A., Overview: The value chain of Tra catfish in Mekong delta region, Vietnam, Vietnam J. Chem., 2023, vol. 61, pp. 1–14. https://doi.org/10.1002/vjch.202200068

Tie, H., Lu, X., Yu, D., Yang, F., Jiang, Q., Xu, Y., and Xia, W., Apoptosis inducing factors involved in the changes of flesh quality in postmortem grass carp (Ctenopharyngodon idella) muscle, Foods, 2023, vol. 12, p. 140. https://doi.org/10.3390/foods12010140

Tran, T.T.H., Nguyen, H.T., Le, B.T.N., Tran, P.H., Nguyen, S.V., and Kim, O.T.P., Characterization of single nucleotide polymorphism in IGF1 and IGF1R genes associated with growth traits in striped catfish (Pangasianodon hypophthalmus Sauvage, 1878), Aquaculture, 2021, vol. 538, p. 736542. https://doi.org/10.1016/j.aquaculture.2021.736542

Tran, T.T.H., Tran, H.S., Le, B.T.N., Nguyen, S.V., Vu, H.A., and Kim, O.T.P., Significant association between a non–synonymous SNP in IGFBP5 gene and the growth of striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878), Vietnam J. Biotechnol., 2023a, vol. 21, pp. 1–11.

Tran, T.T.H., Tran, H.S., Le, B.T.N., Van Nguyen, S., Vu, H.A., and Kim, O.T.P., Novel single nucleotide polymorphisms of insulin–like growth factor–binding protein 7 (IGFBP7) gene significantly associated with growth traits in striped catfish (Pangasianodon hypophthalmus Sauvage, 1878), Mol. Genet. Genomics, 2023b, vol. 298, no. 4, pp. 1–11. https://doi.org/10.1007/s00438-023-02016-2

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., and Rozen, S.G., Primer3––new capabilities and interfaces, Nucleic Acids Res., 2012, vol. 40, p. e115. https://doi.org/10.1093/nar/gks596

Vu, N.T., Van Sang, N., Phuc, T.H., Vuong, N.T., and Nguyen, N.H., Genetic evaluation of a 15–year selection program for high growth in striped catfish Pangasianodon hypophthalmus, Aquaculture, 2019, vol. 509, pp. 221–226. https://doi.org/10.1016/j.aquaculture.2019.05.034