TSitologiya i Genetika 2024, vol. 58, no. 5, 96-98
Cytology and Genetics 2024, vol. 58, no. 5, 493–504, doi: https://www.doi.org/10.3103/S009545272405013X

Characterization and gene expression patterns of calpain family in striped catfish

Trang T.H.T., Nhung T.H.N., Hai-Anh V., Hoang S.T., Binh T.N.L., Phuc H.T., Oanh T.P.K.

  1. Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str, Cau Giay, Hanoi, Vietnam
  2. Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet str, Cau Giay, Hanoi, Vietnam
  3. Research Institute of Aquaculture, No.2, 116 Nguyen Dinh Chieu Str, District 1, Ho Chi Minh City, Vietnam

Calpains are calcium­dependent intracellular neutral cysteine proteases that have been known to play an important role in post­mortem proteolysis and meat tenderisation in fish. In this study, the calpain family (CAPN) in striped catfish (Pangasianodon hypophthalmus) which is one of major aquaculture species in Vietnam was characterized. Firstly, the catfish genome database was searched for calpain gene family, then, classification, phylogenetic relationship and gene structure were analyzed. In striped catfish genome, 14 calpain genes were found that are orthologs to other vertebrate species, which were classified into typical and atypical calpains according to their structures. Next, the transcriptional gene expression of typical CAPN­1, ­2, ­3, ­11, ­13 genes in muscle, liver and brain tissues of the striped catfish were examined. The results showed that gene expression of CAPN­2 and CAPN­13 genes was barely detectable, while that of CAPN­1, ­3, ­11 genes was widely detected in all three types of tissues. In striped catfish muscle tissue, CAPN­3 transcript abundance was nearly three and 27 fold greater than CAPN­11 and CAPN­1, respectively. Our results suggest that CAPN­3 in P. hypophthalmus is also a muscle­specific calpain, which had been reported in other species. The results of this study provide a data resource for further research on the function of calpain genes and their genetic diversity that might be correlated with muscle texture in striped catfish. 

Keywords: Calpain family, CAPN, expression profile, Pangasianodon hypophthalmus, striped catfish

TSitologiya i Genetika
2024, vol. 58, no. 5, 96-98

Current Issue
Cytology and Genetics
2024, vol. 58, no. 5, 493–504,
doi: 10.3103/S009545272405013X

Full text and supplemented materials

References

Ahmed, Z., Donkor, O., Street, W.A., and Vasiljevic, T., Calpains- and cathepsins-induced myofibrillar changes in post-mortem fish: Impact on structural softening and release of bioactive peptides, Trends Food Sci. Techn-ol., 2015, vol. 45, pp. 130–146. https://doi.org/10.1016/j.tifs.2015.04.002

Beckmann, J.S. and Spencer, M., Calpain 3, the “gatekeeper” of proper sarcomere assembly, turnover and maintenance, Neuromuscular Disord., 2008, vol. 18, pp. 913–921. https://doi.org/10.1016/j.nmd.2008.08.005

Chaudhry, B., Hanif, F., and Saboohi, K., Molecular signatures of Calpain 10 isoforms sequences, envisage functional similarity and therapeutic potential, Pak. J. Pharm. Sci., 2019, vol. 32, pp. 937–946. Coomer, C.E. and Morris, A.C., Capn5 expression in the healthy and regenerating zebrafish retina, Invest. Ophthalmol. Visal Sci., 2018, vol. 59, pp. 3643–3654. https://doi.org/10.1167/iovs.18-24278

Coomer, C.E. and Morris, A.C., Capn5 expression in the healthy and regenerating zebrafish retina, Invest. Ophthalmol. Visal Sci., 2018, vol. 59, pp. 3643–3654. https://doi.org/10.1167/iovs.1824278

FAO, The state of world fisheries and aquaculture, 2022. Accessed May 22, 2022.https://doi.org/10.4060/cc0461en

Fletcher, R., Catfish can be key drivers of global aquaculture growth, The Fish Site. https://thefishsite.com/articles/catfish–can–be–key–drivers–of–global–aquaculture–growth. Accessed October 8, 2020.

Goll, D.E., Thompson, V.F., Li, H., Wei, W., and Cong, J., The calpain system, Physiol. Rev., 2003, vol. 83, pp. 731–801. https://doi.org/10.1152/physrev.00029.2002

Hoegg, S., Brinkmann, H., Taylor, J.S., and Meyer A., Phylogenetic timing of the fish–specific genome duplication correlates with the diversification of teleost fish, J. Mol. Evol., 2004, vol. 59, pp. 190–203. https://doi.org/10.1007/s00239-004-2613-z

Hwang, S.D., Choi, K.–M., Hwang, J.Y., Kwon, M.–G., Jeong, J.–M., Seo, J.S., Jee, B.–Y. and Park, C.–I., Molecular genetic characterisation and expression profiling of calpain 3 transcripts in red sea bream (Pagrus major), Fish Shellfish Immunol., 2020, vol. 98, pp. 19–24. https://doi.org/10.1016/j.fsi.2019.12.090

Johnston, I.A., Bower, N.I., and Macqueen, D.J., Growth and the regulation of myotomal muscle mass in teleost fish, J. Exp. Biol., 2011, vol. 214, pp. 1617–1628. https://doi.org/10.1242/jeb.038620

Kantserova, N.P., Lysenko, L.A., Veselov, A.E., and Nemova, N.N., Protein degradation systems in the skeletal muscles of parr and smolt Atlantic salmon Salmo salar L. and brown trout Salmo trutta L., Fish Physiol. Biochem., 2017, vol. 43, pp. 1187–1194. http://doi.org/10.1007/s10695-017-0364-1

Kim, O.T.P., Nguyen, P.T., Shoguchi, E., Hisata, K., Vo, T.T.B., Inoue, J., Shinzato, C., Le, B.T.N., Nishitsuji, K., Kanda, M., Nguyen, V.H., Nong, H.V., and Satoh, N., A draft genome of the striped catfish, Pangasianodon hypophthalmus, for comparative analysis of genes relevant to development and a resource for aquaculture improvement, BMC Genomics, 2018, vol. 19, p. 733. http://doi.org/10.1186/s12864-018-5079-x

Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, pp. 1870–1874. https://doi.org/10.1093/molbev/msw054

Lavajoo, F., Perelló–Amorós, M., Vélez, E.J., Sánchez–Moya, A., Balbuena–Pecino, S., Riera–Heredia, N., Fernández–Borràs, J., Blasco, J., Navarro, I., Capilla, E., and Gutiérrez, J., Regulatory mechanisms involved in muscle and bone remodeling during refeeding in gilthead sea bream, Sci. Rep., 2020, vol. 10, p. 184. http://doi.org/10.1038/s41598-019-57013-6

Lee, H.L., Santé–Lhoutellier, V., Vigouroux, S., Briand, Y., and Briand, M., Calpain specificity and expression in chicken tissues, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2007, vol. 146, pp. 88–93. https://doi.org/10.1016/j.cbpb.2006.09.006

Lepage, S.E. and Bruce, A.E.E., Characterization and comparative expression of zebrafish calpain system genes during early development, Dev. Dyn., 2008, vol. 237, pp. 819–829. https://doi.org/10.1002/dvdy.21459

Macqueen, D.J., Meischke, L., Manthri, S., Anwar, A., Solberg, C., and Johnston, I.A., Characterisation of capn1, capn2–like, capn3 and capn11 genes in Atlantic halibut (Hippoglossus hippoglossus L.): Transcriptional regulation across tissues and in skeletal muscle at distinct nutritional states, Gene, 2010a, vol. 453, pp. 45–58. https://doi.org/10.1016/j.gene.2010.01.002

Macqueen, D.J., Delbridge, M.L., Manthri, S., and Johnston, I.A., A newly classified vertebrate calpain protease, directly ancestral to CAPN1 and 2, episodically evolved a restricted physiological function in placental mammals, Mol. Biol. Evol., 2010b, vol. 27, pp. 1886–1902. https://doi.org/10.1093/molbev/msq071

Macqueen, D.J. and Wilcox, A.H., Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses, Open Biol., 2014, vol. 4, p. 130219. https://doi.org/10.1098/rsob.130219

Ndandala, C.B., Dai, M., Mustapha, U.F., Li, X., Liu, J., Huang, H., Li, G., and Chen, H., Current research and future perspectives of GH and IGFs family genes in somatic growth and reproduction of teleost fish, Aquacult. Rep., 2022, vol. 26, p. 101289. https://doi.org/10.1016/j.aqrep.2022.101289

Nguyen, S.V., Genetic parameters of filet yield and body traits on river catfish (Pangasianodon hypophthalmus) in Vietnam, Aquaculture, 2007, vol. 272, p. 295. https://doi.org/10.1016/j.aquaculture.2007.07.150

Nguyen, S.V., Klemetsdal, G., Ødegård, J., and Gjøen, H.M., Genetic parameters of economically important traits recorded at a given age in striped catfish (Pangasianodon hypophthalmus), Aquaculture, 2012, vols. 344–349, pp. 82–89. https://doi.org/10.1016/j.aquaculture.2012.03.013

Ono, Y., Ojima, K., Shinkai–Ouchi, F., Hata, S., and Sorimachi, H., An eccentric calpain, CAPN3/p94/calpain–3, Biochimie, 2016, vol. 122, pp. 169–187. https://doi.org/10.1016/j.biochi.2015.09.010

Ono, Y. and Sorimachi, H., Amino acid sequence alignment of vertebrate CAPN3/calpain–3/p94, Data Brief, 2015, vol. 5, pp. 366–367. https://doi.org/10.1016/j.dib.2015.09.021

Ookura, T., Koyama, E., Hansen, A., Teeter, J.H., Kawamura, Y., and Brand, J.G., Phylogenetic analysis and taste cell expression of Calpain 9 in catfish (Ictalurus punctatus), Nat. Sci., 2015, vol. 7, p. 8. https://doi.org/10.4236/ns.2015.73016

Paysan–Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B., Salazar, G., Bileschi, M., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D., Letunić, I., Marchler–Bauer, A., Mi, H., Natale, D., Orengo, C., Pandurangan, A., Rivoire, C., Sigrist, C., Sillitoe, I., Thanki, N., Thomas, P., Tosatto, S., Wu, C., and Bateman, A., InterPro in 2022, Nucleic Acids. Res., 2022, vol. 51, no. D1, pp. D418–D427. https://doi.org/10.1093/nar/gkac993

Preziosa, E., Liu, S., Terova, G., Gao, X., Liu, H., Kucuktas, H., Terhune, J., and Liu, Z., Effect of nutrient restriction and re–feeding on calpain family genes in skeletal muscle of channel catfish (Ictalurus punctatus), PLoS One, 2013, vol. 8, p. e59404. http://doi.org/ Prykhozhij, S.V., Caceres, L., Ban, K., Cordeiro–Santanach, A., Nagaraju, K., Hoffman, E.P., and Berman, J.N., Loss of calpain3b in zebrafish, a model of limb–girdle muscular dystrophy, increases susceptibility to muscle defects due to elevated muscle activity, Genes, 2023, vol. 14, p. 492. https://doi.org/10.3390/genes1402049210.3390/genes14020492https://doi.org/10.1371/journal.pone.0059404

Radaelli, G., Rowlerson, A., Mascarello, F., Patruno, M., and Funkenstein, B., Myostatin precursor is present in several tissues in teleost fish: a comparative immunolocalization study, Cell Tissue Res., 2003, vol. 311, pp. 239–250. https://doi.org/10.1007/s00441-002-0668-y

Saitou, N. and Nei, M., The neighbor–joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Salem, M., Nath, J., Rexroad, C.E., Killefer, J., and Yao, J., Identification and molecular characterization of the rainbow trout calpains (Capn1 and Capn2): their expression in muscle wasting during starvation, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2005, vol. 140, pp. 63–71. https://doi.org/10.1016/j.cbpc.2004.09.007

Salmerón, C., Garcia de la serrana, D., Jiménez–Amilburu, V., Fontanillas, R., Navarro, I., Johnston, I., Gutierrez, J., and Capilla, E., Characterisation and expression of calpain family members in relation to nutritional status, diet composition and flesh texture in gilthead sea bream (Sparus aurata), PloS One, 2013, vol. 8, p. e75349. https://doi.org/10.1371/journal.pone.0075349

Schmittgen, T.D. and Livak, K.J., Analyzing real–time PCR data by the comparative C T method, Nat. Protoc., 2008, vol. 3, pp. 1101–1108. https://doi.org/10.1038/nprot.2008.73

Sorimachi, H., Hata, S., and Ono, Y., Calpain chronicle–an enzyme family under multidisciplinary characterization, Proc. Jpn. Acad., Ser. B, 2011, vol. 87, pp. 287–327. https://doi.org/10.2183/pjab.87.287

Spinozzi, S., Albini, S., Best, H., and Richard, I., Calpains for dummies: What you need to know about the calpain family, Biochim. Biophys. Acta, Proteins. Proteomics, 2021, vol. 1869, p. 140616. https://doi.org/10.1016/j.bbapap.2021.140616

Tan, N.D., Tuyen, V.T.X., Ha, H.T.N., and Dao, D.T.A., Overview: The value chain of Tra catfish in Mekong delta region, Vietnam, Vietnam J. Chem., 2023, vol. 61, pp. 1–14. https://doi.org/10.1002/vjch.202200068

Tie, H., Lu, X., Yu, D., Yang, F., Jiang, Q., Xu, Y., and Xia, W., Apoptosis inducing factors involved in the changes of flesh quality in postmortem grass carp (Ctenopharyngodon idella) muscle, Foods, 2023, vol. 12, p. 140. https://doi.org/10.3390/foods12010140

Tran, T.T.H., Nguyen, H.T., Le, B.T.N., Tran, P.H., Nguyen, S.V., and Kim, O.T.P., Characterization of single nucleotide polymorphism in IGF1 and IGF1R genes associated with growth traits in striped catfish (Pangasianodon hypophthalmus Sauvage, 1878), Aquaculture, 2021, vol. 538, p. 736542. https://doi.org/10.1016/j.aquaculture.2021.736542

Tran, T.T.H., Tran, H.S., Le, B.T.N., Nguyen, S.V., Vu, H.A., and Kim, O.T.P., Significant association between a non–synonymous SNP in IGFBP5 gene and the growth of striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878), Vietnam J. Biotechnol., 2023a, vol. 21, pp. 1–11.

Tran, T.T.H., Tran, H.S., Le, B.T.N., Van Nguyen, S., Vu, H.A., and Kim, O.T.P., Novel single nucleotide polymorphisms of insulin–like growth factor–binding protein 7 (IGFBP7) gene significantly associated with growth traits in striped catfish (Pangasianodon hypophthalmus Sauvage, 1878), Mol. Genet. Genomics, 2023b, vol. 298, no. 4, pp. 1–11. https://doi.org/10.1007/s00438-023-02016-2

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., and Rozen, S.G., Primer3––new capabilities and interfaces, Nucleic Acids Res., 2012, vol. 40, p. e115. https://doi.org/10.1093/nar/gks596

Vu, N.T., Van Sang, N., Phuc, T.H., Vuong, N.T., and Nguyen, N.H., Genetic evaluation of a 15–year selection program for high growth in striped catfish Pangasianodon hypophthalmus, Aquaculture, 2019, vol. 509, pp. 221–226. https://doi.org/10.1016/j.aquaculture.2019.05.034