ISSN 0564-3783  



Головна
Контакти
Архів  
Тематика журналу
Підписка
До уваги авторів
Редколегія
Мобільна версія


In English

Export citations
UNIMARC
BibTeX
RIS





Вплив фотобіомодуляційної терапії на розвиток оксидативного стресу у лейкоцитах крові щурів зі стрептозотоцин-індукованим цукровим діабетом

Кармаш О.І., Люта М.Я., Коробов А.М., Сибірна Н.О.

Оригінальна работа 




Оксидативний стрес – одна з головних причин розвитку важких ускладнень при цукровому діабеті (ЦД). Сучасні фармакологічні препарати, хоча і здатні знижувати рівень глюкози в крові, рідко проявляють антиоксидантні властивості. Існують дані про широкий спектр біологічної активності фотобіомодуляційної терапії (ФБМТ). Потенційна цукрознижувальна та антиоксидантна дії роблять цей тип терапії перспективним у застосуванні для лікування ЦД та його ускладнень. Проведено дослідження впливу ФБМТ на стан системи антиоксидантного захисту лейкоцитів крові щурів зі стрептозотоцин-індукованим ЦД Встановлено, що у щурів з ЦД за опромінення відбувається підвищення активності супероксиддисмутази та нормалізація вмісту маркерів оксидативного стресу (ТБК-позитивних продуктів, окисно модифікованих білків та кінцевих продуктів глікації білків).

РЕЗЮМЕ. Оксидативный стресс – одна из главных причин развития тяжелых усложнений при сахарном диабете (СД). Современные фармакологические препараты, хотя и способны снижать уровень глюкозы, редко проявляют антиоксидантные свойства. Существуют данные о широком спектре биологической активности фотобиомодуляционной терапии (ФБМТ). Потенциальные сахароснижающее и антиоксидантное действия делают этот тип терапии перспективным в применении для лечения СД и его усложнений. Проведено исследование влияния ФБМТ на состояние системы антиоксидантной защиты лейкоцитов крови крыс из стрептозотоцин-индуцированным СД. Установлено, что у крыс с СД при облучении происходит повышение активности супероксиддисмутазы и нормализация содержания маркеров оксидативного стресса (ТБК-положительных продуктов, окислительно-модифицированных белков и конечных продуктов гликации белков).

Ключові слова: цукровий діабет; фотобіомодуляційна терапія; лейкоцити крові; оксидативний стрес; система антиоксидантного захисту
сахарный диабет; фотобиомодуляционная терапия; лейкоциты крови; оксидативный стресс; система антиоксидантной защиты

Цитологія і генетика 2020, том 54, № 5, C. 97-107

  1. Кафедра біохімії, Львівський національний університет ім. Івана Франка, Львів, Україна
  2. Лабораторія квантової біології та квантової медицини, Харківський національний університет ім. В.Н. Каразіна, Харків, Україна

E-mail: sashakarmash gmail.com

Кармаш О.І., Люта М.Я., Коробов А.М., Сибірна Н.О. Вплив фотобіомодуляційної терапії на розвиток оксидативного стресу у лейкоцитах крові щурів зі стрептозотоцин-індукованим цукровим діабетом, Цитологія і генетика., 2020, том 54, № 5, C. 97-107.

В "Cytology and Genetics". Якщо тільки можливо, цитуйте статтю по нашій англомовній версії:
O. I. Karmash, M. Ya. Liuta, A. M. Korobov & N. O. Sybirna Effect of Photomodulation Therapy on Development of Oxidative Stress in Blood Leukocytes of Rats with Streptozocin-Induced Diabetes Mellitus, Cytol Genet., 2020, vol. 54, no. 5, pp. 456–464
DOI: 10.3103/S0095452720050114


Посилання

1. Elbe, H., Vardi, N., Esrefoglu, M., Ates, B., Yologlu, S., and Taskapan, C., Amelioration of strep-tozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats, Hum. Exp. Toxicol., 2015, vol. 34, no. 1, pp. 1–14.https://doi.org/10.1177/0960327114531995

2. Evan, D.H., Abrahamse, H., Efficacy of three laser wavelengths for in vitro wound healing, Photodermat. Photoimm. Photomed., 2008, vol. 24 no. 4, pp. 199–210. https://doi.org/10.1111/j.1600-0781.2008.00362.x

3. Chung, H., Dai, T., Sharma, S.K., Huang, Y.Y., Carroll, J.D., and Hamblin, M.R., The nuts and bolts of low-level laser (light) therapy, Ann. Biomed. Eng., 2012, vol. 40, no. 2, pp. 516–533. https://doi.org/10.1007/s10439-011-0454-7

4. Karmash, O.I., Liuta, M.Y., Yefimenko, N.V., Korobov, A.M., and Sybirna, N.O., The influence of low-level light radiation of red spectrum diapason on glycemic profile and physicochemical characteristics of rat’s erythrocytes in diabetes mellitus, Fiziol. Zh., 2018, vol. 64, no. 6, pp. 68– 76. https://doi.org/10.15407/fz64.06.068

5. Denadai, A.S., Aydos, R.D., Silva, I.S., Olmedo, L., de Senna Cardoso, B.M., da Silva, B.A.K., and de Carvalho, P.T.C., Acute effects of low-level laser therapy (660 nm) on oxidative stress levels in diabetic rats with skin wounds, Exp. Ther. Oncol., 2017, vol. 11, no. 2, pp. 85–89.

6. Korolyuk, M.A., Ivanova, I.H., and Maiorova, I.H., Method for the determination of catalase activity, Lab. Delo, 1988, no. 1, pp. 16–19.

7. Hnatush, A.R., Drel, V.R., Yalaneckyy, A.Ya., Mizin, V.I., Zagoruyko, V.A., Gerzhykova, V.G., and Sybirna, N.O., The antioxidant effect of natural polyphenolic complexes of grape wine in the rat retina under streptozotocin-induced diabetes mellitus., Biol. Stud., 2011, vol. 5, no. 2, pp. 61–72. https://doi.org/10.30970/sbi.0502.156

8. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.

9. Meshchyshyn, I.F., Method for the determination of proteins oxidative modification, Bukov. Med. Visn., 1999, no. 1, pp. 196–205.

10. Witko-Sarsat, V., Friedlander, M., Capeillere-Blandin, C., Nguyen-Khoa, T., Nguyen, A.T., Zingraff, J., Jungers, P., and Descamps-Latscha, B., Advanced oxidation protein products as a novel marker of oxidative stress in uremia, Kidney Int., 1996, vol. 49, no. 5, pp. 1304–1313. https://doi.org/10.1038/ki.1996.186

11. Kalousová, M., Skrha, J., and Zima, T., Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus, Physiol. Res., 2002, vol. 51, no. 6, pp. 597–604.

12. Swathi, P. and Kilari, E., A review on methods of estimation of advanced glycation end products, World J. Pharm. Res., 2015, vol. 4, no. 1, pp. 689–699.

13. Timirbulatov, R.A. and Selesnev, E.I., Method for increasing the free-radical oxidation of lipid-containing blood components and its diagnostical meaning, Lab. Delo, 1981, no. 4, pp. 209–211.

14. De Marchi, T., Leal Junior, E.C., Bortoli, C, Tomazoni, S.S., Lopes-Martins, R.A., and Salvador, M., Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress, Lasers Med. Sci., 2012, vol. 27, no. 1, pp. 231–236. https://doi.org/10.1007/s10103-011-0955-5

15. Guaraldo, S.A., Serra, A.J., Amadio, E.M., Antonio, E.L., Silva, F., Portes, LA., Tucci, P.J.F., Leal-Junior, E.C.P., and de Tarso Camillo de Carvalho, P., The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise, Lasers Med. Sci., 2016, vol. 31, no. 5, pp. 833–840. https://doi.org/10.1007/s10103-016-1882-2

16. Dos Santos, S.A., Dos Santos Vieira, M.A., Simxes, M.C.B., Serra, A.J., Leal-Junior, E.C., and de Carvalho, P.T.C., Photobiomodulation therapy associated with treadmill training in the oxidative stress in a collagen-induced arthritis model, Lasers Med. Sci., 2017, vol. 32, no. 5, pp. 1071–1079. https://doi.org/10.1007/s10103-017-2209-7

17. Ibuki, F.K., Simxes, A., Nicolau, J., and Nogueira, F.N., Laser irradiation affects enzymatic antioxidant system of streptozotocin-induced diabetic rats, Lasers Med. Sci., 2013, vol. 28, no. 3, pp. 911–918. https://doi.org/10.1007/s10103-012-1173-5

18. Lim, J., Ali, Z.M., Sanders, R.A., Snyder, A.C., Eells, J.T., Henshel, D.S., Watkins, J.B., Effects of low-level light therapy on hepatic antioxidant defense in acute and chronic diabetic rats, Biochem. Mol. Toxicol., 2009, vol. 23, no. 1, pp. 1–8. https://doi.org/10.1002/jbt.20257

19. Lim, J., Sanders, R.A., Snyder, A.C., Eells, J.T., Henshel, D.S., and Watkins, J.B., Effects of low-level light therapy on streptozotocin-induced diabetic kidney, J. Photochem. Photobiol. B., 2010, vol. 99, no. 2, pp. 105–110. https://doi.org/10.1016/j.jphoto-biol.2010.03.00

20. Hamblin, M.R. and Demidova, T.N., Mechanisms of low-level light therapy, Proc. SPIE, 2006, vol. 6140, no. 1, pp. 1–12. https://doi.org/10.1117/12.646294

21. Karu, T., Is it time to consider photobiomodulation as a drug equivalent?, Photomed. Laser Surg., 2013, vol. 31, no. 5, pp. 189–191. https://doi.org/10.1089/pho.2013.3510

22. Chen, C.H., Wang, C.Z., Wang, Y.H., Liao, W.T., Chen, Y.J., Kuo, C.H., Kuo, H.F., and Hung, C.H., Effects of low-level laser therapy on M1-related cytokine expression in monocytes via histone modification, Mediat. Inflamm., 2014, vol. 2014, pp. 1– 13. https://doi.org/10.1155/2014/625048

23. Drel, V.R. and Sybirna, N., Protective effects of polyphenolics in red wine on diabetes associated oxidative/nitrative stress in streptozotocin-diabetic rats, Cell Biol. Int., 2010, vol. 34, no. 12, pp. 1147–1153. https://doi.org/10.1042/CBI20100201

24. Lima, P.L.V., Pereira, C.V., Nissanka, N., Arguello, T., Gavini, G., Maranduba, C.M.D.C., Diaz, F., and Moraes, C.T., Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase, J. Photochem. Photobiol. B, 2019, vol. 194, pp. 71–75. https://doi.org/10.1016/j.jphoto-biol.2019.03.015

25. Amaroli, A., Ferrando, S., and Benedicenti, S., Photobiomodulation affects key cellular pathways of all life-forms: considerations on old and new laser light targets and the calcium issue, Photochem. Photobiol., 2019, vol. 95, no. 1, pp. 455–459. https://doi.org/10.1111/php.13032

26. Martin, K.R. and Barrett, J.C., Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity, Hum. Exp. Toxicol., 2002, vol. 21, no. 2, pp. 71–75. https://doi.org/10.1191/0960327102ht213oa

27. Sperandio, F.F., Giudice, F.S., Corria, L., Pinto, D.S. Jr., Hamblin, M.R., and de Sousa, S.C, Low-level laser therapy can produce increased aggressiveness of dysplastic and oral cancer cell lines by modulation of Akt/mTOR signaling pathway, J. Biophotonics, 2013, vol. 6, no. 10, pp. 839–847. https://doi.org/10.1002/jbio.201300015

28. Batinic-Haberle, I., Tovmasyan, A., Roberts, E.R., Vujaskovic, Z., Leong, K.W., and Spasojevic, I., SOD therapeutics: latest insights into their structure–activity relationships and impact on the cellular redox-based signaling pathways, Antioxid. Red. Signal., 2014, vol. 20, no. 15, pp. 2372–415. https://doi.org/10.1089/ars.2012.5147

29. Ellis, E.M., Reactive carbonyls and oxidative stress: potential for therapeutic intervention, Pharmacol. Ther., 2007, vol. 115, no. 1, pp. 13–24. https://doi.org/10.1016/j.pharmthera.2007.03.015

30. Qian, W., Zhao-Ming, Z., Ying, P., Ji-Huan, Z., Shuai, Z., Si-Yuan, Z., and Jian-Ting, C., Advanced oxidation protein products as a novel marker of oxidative stress in postmenopausal osteoporosis, Med. Sci. Monit., 2015, vol. 21, pp. 2428– 2432. https://doi.org/10.12659/MSM.894347

31. Bochi, G.V., Torbitz, V.D., de Campos, L.P., Sangoi, M.B., Fernandes, N.F., Gomes, P., Moretto, M.B., Barbisan, F., da Cruz, I.B., and Moresco, R.N., In vitro oxidation of collagen promotes the formation of advanced oxidation protein products and the activation of human neutrophils, Inflammation, 2016, vol. 39, no. 2, pp. 916–927. https://doi.org/10.1007/s10753-016-0325-3

32. Merhi, Z., Kandaraki, E.A., and Diamanti-Kandarakis, E., Implications and future perspectives of AGEs in PCOS pathophysiology, Trends Endocrinol. Metab., 2019, vol. 30, no. 3, pp. 150–162. https://doi.org/10.1016/j.tem.2019.01.005

33. Deluyker, D., Evens, L., and Bito, V., Advanced glycation end products (AGEs) and cardiovascular dysfunction: focus on high molecular weight AGEs, Amino Acids, 2017, vol. 49, no. 9, pp. 1535–1541. https://doi.org/10.1007/s00726-017-2464-8

34. Huang, L., Jiang, X., Gong, L., Xing, D., Photoactivation of Akt1/GSK3β isoform-specific signaling axis promotes pancreatic β-cell regeneration, J. Cell Biochem., 2015, vol. 116, no. 8, pp. 1741–1754. https://doi.org/10.1002/jcb.25133

35. Vrhovac, I., Breljak, D., and Sabolic, I., Glucose transporters in the mammalian blood cells, Periodic. Biologor., 2014, vol. 116, no. 2, pp. 131–138.

36. Kipmen-Korgun, D., Bilmen-Sarikcioglu, S., Altunbas, H., Demir, R., and Korgun, E.T., Type-2 diabetes down-regulates glucose transporter proteins and genes of the human blood leukocytes, Scand. J. Clin. Lab. Invest., 2009, vol. 69, no. 3, pp. 350–358. https://doi.org/10.1080/00365510802632163

37. Simpson, I.A., Dwyer, D., Malide, D., Moley, K.H., Travis, A., and Vannucci, S.J., The facilitative glucose transporter GLUT3: 20 years of distinction, Am. J. Physiol. Endocrinol. Metab., 2008, vol. 295, no. 2, pp. 242–253. https://doi.org/10.1152/ajpendo. 90388.2008

38. Ueda-Wakagi, M., Hayashibara, K., Nagano, T., Ikeda, M., Yuan, S., Ueda, S., Shirai, Y., Yoshida, K.I., and Ashida, H., Epigallocatechin gallate induces GLUT4 translocation in skeletal muscle through both PI3K- and AMPK-dependent pathways, Food Funct., 2018, vol. 9, no. 8, pp. 4223–4233. https://doi.org/10.1039/C8FO00807H

39. Krook, A., Wallberg-Henriksson, H., and Zierath, J.R., Sending the signal: molecular mechanisms regulating glucose uptake, Med. Sci. Sports Exerc., 2004, vol. 36, no. 7, pp. 1212–1217. https://doi.org/10.1249/01.MSS.0000132387.25853.3B

40. Thomas, M.C., Forbes, J.M., and Cooper, M.E., Advanced glycation end products and diabetic nephropathy, Am. J. Ther., 2005, vol. 12, no. 6, pp. 562–572. https://doi.org/10.1097/01.ASN.00000-77413.41276.17

41. Dzydzan, O., Bila, I., Kucharska, A.Z., Brodyak, I., and Sybirna, N., Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L.) on rats with streptozotocin-induced diabetes mellitus, Food Funct., 2019, pp. 1–14. https://doi.org/10.1039/C9FO00515C

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 21.09.21