ISSN 0564-3783  



Main page
Contacts
Themes
Archive  
Themes
Subscription
Information to authors
Editorial board
Mobile version


In Ukrainian

Export citations
UNIMARC
BibTeX
RIS





The effect of photobiomodulation therapy on oxidative stress progressing in blood leukocytes of streptozotocin-induced diabetic rats

Karmash O.I., Liuta M.Ya., Korobov A.M., Sybirna N.O.

 




SUMMARY. Oxidative stress is one of the main reasons of severe complications development during diabetes mellitus (DM). Modern pharmacological drugs are able to lower blood glucose level but seldom possess antioxidant properties. There is data about broad specter of biological activity of photobiomodulation therapy (PBM therapy). Potential ability to decrease blood glucose concentration and antioxidant activity give this type of therapy a perspective application in treatment of DM and its complications. The effect of PBM therapy on antioxidant protection system of blood leukocytes in rats with streptozotocin-induced DM was studied. Established that irradiation of rats with DM cause the increasing of superoxide dismutase activity and normalization of oxidative stress markers (TBA-positive products, oxidatively modified proteins and advanced glycation end products).

Key words: diabetes mellitus; photobiomodulation therapy; blood leukocytes; oxidative stress; antioxidant system

Tsitologiya i Genetika 2020, vol. 54, no. 5, pp. 97-107

  1. Department of Biochemistry, Ivan Franko National University of Lviv, Lviv, Ukraine
  2. Laboratory of Quantum Biology and Quantum Medicine, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

E-mail: sashakarmash gmail.com

Karmash O.I., Liuta M.Ya., Korobov A.M., Sybirna N.O. The effect of photobiomodulation therapy on oxidative stress progressing in blood leukocytes of streptozotocin-induced diabetic rats, Tsitol Genet., 2020, vol. 54, no. 5, pp. 97-107.

In "Cytology and Genetics":
O. I. Karmash, M. Ya. Liuta, A. M. Korobov & N. O. Sybirna Effect of Photomodulation Therapy on Development of Oxidative Stress in Blood Leukocytes of Rats with Streptozocin-Induced Diabetes Mellitus, Cytol Genet., 2020, vol. 54, no. 5, pp. 456Ц464
DOI: 10.3103/S0095452720050114


References

1. Elbe, H., Vardi, N., Esrefoglu, M., Ates, B., Yologlu, S., and Taskapan, C., Amelioration of strep-tozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats, Hum. Exp. Toxicol., 2015, vol. 34, no. 1, pp. 1Ц14.https://doi.org/10.1177/0960327114531995

2. Evan, D.H., Abrahamse, H., Efficacy of three laser wavelengths for in vitro wound healing, Photodermat. Photoimm. Photomed., 2008, vol. 24 no. 4, pp. 199Ц210. https://doi.org/10.1111/j.1600-0781.2008.00362.x

3. Chung, H., Dai, T., Sharma, S.K., Huang, Y.Y., Carroll, J.D., and Hamblin, M.R., The nuts and bolts of low-level laser (light) therapy, Ann. Biomed. Eng., 2012, vol. 40, no. 2, pp. 516Ц533. https://doi.org/10.1007/s10439-011-0454-7

4. Karmash, O.I., Liuta, M.Y., Yefimenko, N.V., Korobov, A.M., and Sybirna, N.O., The influence of low-level light radiation of red spectrum diapason on glycemic profile and physicochemical characteristics of ratТs erythrocytes in diabetes mellitus, Fiziol. Zh., 2018, vol. 64, no. 6, pp. 68Ц 76. https://doi.org/10.15407/fz64.06.068

5. Denadai, A.S., Aydos, R.D., Silva, I.S., Olmedo, L., de Senna Cardoso, B.M., da Silva, B.A.K., and de Carvalho, P.T.C., Acute effects of low-level laser therapy (660 nm) on oxidative stress levels in diabetic rats with skin wounds, Exp. Ther. Oncol., 2017, vol. 11, no. 2, pp. 85Ц89.

6. Korolyuk, M.A., Ivanova, I.H., and Maiorova, I.H., Method for the determination of catalase activity, Lab. Delo, 1988, no. 1, pp. 16Ц19.

7. Hnatush, A.R., Drel, V.R., Yalaneckyy, A.Ya., Mizin, V.I., Zagoruyko, V.A., Gerzhykova, V.G., and Sybirna, N.O., The antioxidant effect of natural polyphenolic complexes of grape wine in the rat retina under streptozotocin-induced diabetes mellitus., Biol. Stud., 2011, vol. 5, no. 2, pp. 61Ц72. https://doi.org/10.30970/sbi.0502.156

8. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265Ц275.

9. Meshchyshyn, I.F., Method for the determination of proteins oxidative modification, Bukov. Med. Visn., 1999, no. 1, pp. 196Ц205.

10. Witko-Sarsat, V., Friedlander, M., Capeillere-Blandin, C., Nguyen-Khoa, T., Nguyen, A.T., Zingraff, J., Jungers, P., and Descamps-Latscha, B., Advanced oxidation protein products as a novel marker of oxidative stress in uremia, Kidney Int., 1996, vol. 49, no. 5, pp. 1304Ц1313. https://doi.org/10.1038/ki.1996.186

11. Kalousová, M., Skrha, J., and Zima, T., Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus, Physiol. Res., 2002, vol. 51, no. 6, pp. 597Ц604.

12. Swathi, P. and Kilari, E., A review on methods of estimation of advanced glycation end products, World J. Pharm. Res., 2015, vol. 4, no. 1, pp. 689Ц699.

13. Timirbulatov, R.A. and Selesnev, E.I., Method for increasing the free-radical oxidation of lipid-containing blood components and its diagnostical meaning, Lab. Delo, 1981, no. 4, pp. 209Ц211.

14. De Marchi, T., Leal Junior, E.C., Bortoli, C, Tomazoni, S.S., Lopes-Martins, R.A., and Salvador, M., Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress, Lasers Med. Sci., 2012, vol. 27, no. 1, pp. 231Ц236. https://doi.org/10.1007/s10103-011-0955-5

15. Guaraldo, S.A., Serra, A.J., Amadio, E.M., Antonio, E.L., Silva, F., Portes, LA., Tucci, P.J.F., Leal-Junior, E.C.P., and de Tarso Camillo de Carvalho, P., The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise, Lasers Med. Sci., 2016, vol. 31, no. 5, pp. 833Ц840. https://doi.org/10.1007/s10103-016-1882-2

16. Dos Santos, S.A., Dos Santos Vieira, M.A., Simxes, M.C.B., Serra, A.J., Leal-Junior, E.C., and de Carvalho, P.T.C., Photobiomodulation therapy associated with treadmill training in the oxidative stress in a collagen-induced arthritis model, Lasers Med. Sci., 2017, vol. 32, no. 5, pp. 1071Ц1079. https://doi.org/10.1007/s10103-017-2209-7

17. Ibuki, F.K., Simxes, A., Nicolau, J., and Nogueira, F.N., Laser irradiation affects enzymatic antioxidant system of streptozotocin-induced diabetic rats, Lasers Med. Sci., 2013, vol. 28, no. 3, pp. 911Ц918. https://doi.org/10.1007/s10103-012-1173-5

18. Lim, J., Ali, Z.M., Sanders, R.A., Snyder, A.C., Eells, J.T., Henshel, D.S., Watkins, J.B., Effects of low-level light therapy on hepatic antioxidant defense in acute and chronic diabetic rats, Biochem. Mol. Toxicol., 2009, vol. 23, no. 1, pp. 1Ц8. https://doi.org/10.1002/jbt.20257

19. Lim, J., Sanders, R.A., Snyder, A.C., Eells, J.T., Henshel, D.S., and Watkins, J.B., Effects of low-level light therapy on streptozotocin-induced diabetic kidney, J. Photochem. Photobiol. B., 2010, vol. 99, no. 2, pp. 105Ц110. https://doi.org/10.1016/j.jphoto-biol.2010.03.00

20. Hamblin, M.R. and Demidova, T.N., Mechanisms of low-level light therapy, Proc. SPIE, 2006, vol. 6140, no. 1, pp. 1Ц12. https://doi.org/10.1117/12.646294

21. Karu, T., Is it time to consider photobiomodulation as a drug equivalent?, Photomed. Laser Surg., 2013, vol. 31, no. 5, pp. 189Ц191. https://doi.org/10.1089/pho.2013.3510

22. Chen, C.H., Wang, C.Z., Wang, Y.H., Liao, W.T., Chen, Y.J., Kuo, C.H., Kuo, H.F., and Hung, C.H., Effects of low-level laser therapy on M1-related cytokine expression in monocytes via histone modification, Mediat. Inflamm., 2014, vol. 2014, pp. 1Ц 13. https://doi.org/10.1155/2014/625048

23. Drel, V.R. and Sybirna, N., Protective effects of polyphenolics in red wine on diabetes associated oxidative/nitrative stress in streptozotocin-diabetic rats, Cell Biol. Int., 2010, vol. 34, no. 12, pp. 1147Ц1153. https://doi.org/10.1042/CBI20100201

24. Lima, P.L.V., Pereira, C.V., Nissanka, N., Arguello, T., Gavini, G., Maranduba, C.M.D.C., Diaz, F., and Moraes, C.T., Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase, J. Photochem. Photobiol. B, 2019, vol. 194, pp. 71Ц75. https://doi.org/10.1016/j.jphoto-biol.2019.03.015

25. Amaroli, A., Ferrando, S., and Benedicenti, S., Photobiomodulation affects key cellular pathways of all life-forms: considerations on old and new laser light targets and the calcium issue, Photochem. Photobiol., 2019, vol. 95, no. 1, pp. 455Ц459. https://doi.org/10.1111/php.13032

26. Martin, K.R. and Barrett, J.C., Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity, Hum. Exp. Toxicol., 2002, vol. 21, no. 2, pp. 71Ц75. https://doi.org/10.1191/0960327102ht213oa

27. Sperandio, F.F., Giudice, F.S., Corria, L., Pinto, D.S. Jr., Hamblin, M.R., and de Sousa, S.C, Low-level laser therapy can produce increased aggressiveness of dysplastic and oral cancer cell lines by modulation of Akt/mTOR signaling pathway, J. Biophotonics, 2013, vol. 6, no. 10, pp. 839Ц847. https://doi.org/10.1002/jbio.201300015

28. Batinic-Haberle, I., Tovmasyan, A., Roberts, E.R., Vujaskovic, Z., Leong, K.W., and Spasojevic, I., SOD therapeutics: latest insights into their structureЦactivity relationships and impact on the cellular redox-based signaling pathways, Antioxid. Red. Signal., 2014, vol. 20, no. 15, pp. 2372Ц415. https://doi.org/10.1089/ars.2012.5147

29. Ellis, E.M., Reactive carbonyls and oxidative stress: potential for therapeutic intervention, Pharmacol. Ther., 2007, vol. 115, no. 1, pp. 13Ц24. https://doi.org/10.1016/j.pharmthera.2007.03.015

30. Qian, W., Zhao-Ming, Z., Ying, P., Ji-Huan, Z., Shuai, Z., Si-Yuan, Z., and Jian-Ting, C., Advanced oxidation protein products as a novel marker of oxidative stress in postmenopausal osteoporosis, Med. Sci. Monit., 2015, vol. 21, pp. 2428Ц 2432. https://doi.org/10.12659/MSM.894347

31. Bochi, G.V., Torbitz, V.D., de Campos, L.P., Sangoi, M.B., Fernandes, N.F., Gomes, P., Moretto, M.B., Barbisan, F., da Cruz, I.B., and Moresco, R.N., In vitro oxidation of collagen promotes the formation of advanced oxidation protein products and the activation of human neutrophils, Inflammation, 2016, vol. 39, no. 2, pp. 916Ц927. https://doi.org/10.1007/s10753-016-0325-3

32. Merhi, Z., Kandaraki, E.A., and Diamanti-Kandarakis, E., Implications and future perspectives of AGEs in PCOS pathophysiology, Trends Endocrinol. Metab., 2019, vol. 30, no. 3, pp. 150Ц162. https://doi.org/10.1016/j.tem.2019.01.005

33. Deluyker, D., Evens, L., and Bito, V., Advanced glycation end products (AGEs) and cardiovascular dysfunction: focus on high molecular weight AGEs, Amino Acids, 2017, vol. 49, no. 9, pp. 1535Ц1541. https://doi.org/10.1007/s00726-017-2464-8

34. Huang, L., Jiang, X., Gong, L., Xing, D., Photoactivation of Akt1/GSK3β isoform-specific signaling axis promotes pancreatic β-cell regeneration, J. Cell Biochem., 2015, vol. 116, no. 8, pp. 1741Ц1754. https://doi.org/10.1002/jcb.25133

35. Vrhovac, I., Breljak, D., and Sabolic, I., Glucose transporters in the mammalian blood cells, Periodic. Biologor., 2014, vol. 116, no. 2, pp. 131Ц138.

36. Kipmen-Korgun, D., Bilmen-Sarikcioglu, S., Altunbas, H., Demir, R., and Korgun, E.T., Type-2 diabetes down-regulates glucose transporter proteins and genes of the human blood leukocytes, Scand. J. Clin. Lab. Invest., 2009, vol. 69, no. 3, pp. 350Ц358. https://doi.org/10.1080/00365510802632163

37. Simpson, I.A., Dwyer, D., Malide, D., Moley, K.H., Travis, A., and Vannucci, S.J., The facilitative glucose transporter GLUT3: 20 years of distinction, Am. J. Physiol. Endocrinol. Metab., 2008, vol. 295, no. 2, pp. 242Ц253. https://doi.org/10.1152/ajpendo. 90388.2008

38. Ueda-Wakagi, M., Hayashibara, K., Nagano, T., Ikeda, M., Yuan, S., Ueda, S., Shirai, Y., Yoshida, K.I., and Ashida, H., Epigallocatechin gallate induces GLUT4 translocation in skeletal muscle through both PI3K- and AMPK-dependent pathways, Food Funct., 2018, vol. 9, no. 8, pp. 4223Ц4233. https://doi.org/10.1039/C8FO00807H

39. Krook, A., Wallberg-Henriksson, H., and Zierath, J.R., Sending the signal: molecular mechanisms regulating glucose uptake, Med. Sci. Sports Exerc., 2004, vol. 36, no. 7, pp. 1212Ц1217. https://doi.org/10.1249/01.MSS.0000132387.25853.3B

40. Thomas, M.C., Forbes, J.M., and Cooper, M.E., Advanced glycation end products and diabetic nephropathy, Am. J. Ther., 2005, vol. 12, no. 6, pp. 562Ц572. https://doi.org/10.1097/01.ASN.00000-77413.41276.17

41. Dzydzan, O., Bila, I., Kucharska, A.Z., Brodyak, I., and Sybirna, N., Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L.) on rats with streptozotocin-induced diabetes mellitus, Food Funct., 2019, pp. 1Ц14. https://doi.org/10.1039/C9FO00515C

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 29.11.21