ISSN 0564-3783  



Головна
Контакти
Архів  
Тематика журналу
Підписка
До уваги авторів
Редколегія
Мобільна версія


In English

Export citations
UNIMARC
BibTeX
RIS





Изучение аллельного разнообразия генов hmw глютенинов сортов и линий пшеницы, используемых в селекционном процессе в Республике Беларусь, с помощью пцр маркеров

Фомина Е.А., Малышев С.В., Шилова А.А., Левданский О.Д., Урбанович О.Ю.

Оригінальна работа 




Исследован аллельный состав генов, кодирующих высокомолекулярные субъединицы глютенинов, в коллекции, состоящей из 236 образцов озимой и 98 образцов яровой пшеницы белорусской и зарубежной селекции. Выявлено 13 аллелей среди образцов озимой пшеницы и 11 – среди образцов яровой пшеницы. Это в целом меньше, чем в странах Европы, Азии и Африки. Среди исследованных образцов выявлено 36 различных генотипов. Наиболее часто среди образцов озимой пшеницы встречаются сорта и линии, обладающие генотипами Glu-A1с, Glu-B1с, Glu-D1d (16,2 % от общего количества исследованных образцов), Glu-A1a, Glu-B1с, Glu-D1d (13,7 %), Glu-A1b, Glu-B1с, Glu-D1d (12,7 %). Cреди образцов яровой пшеницы преобладают сорта и линии, обладающие генотипами Glu-A1a, Glu-B1с, Glu-D1d (22,5 %), Glu-A1a, Glu-B1с, Glu-D1a (16,4 %), Glu-A1с, Glu-B1f, Glu-D1d (13,3 %). В геноме линии яровой пшеницы КП-406/11 обнаружен аллель гена, кодирующего Bx-субъединицу, максимальная степень идентичности которого относительно представленных в базе данных GenBank нуклеотидных последовательностей Bx-субъединиц составила 99 %. Он содержит открытую рамку считывания длиной 2367 п.н. и имеет наибольшую степень идентичности с нуклеотидной последовательностью субъединицы Вх14. Аминокислотная последовательность длиной 789, кодируемая данным аллелем, отличается от Вх14 заменами аминокислотных остатков в трех позициях – 662, 780 и 788. Он получил название Вх14.1 (номер доступа в Genbank MH108092).

РЕЗЮМЕ. Досліджено алельний склад генів, що кодують високомолекулярні субодиниці глютенінів в колекції, що складається з 236 зразків озимої і 98 зразків ярої пшениці білоруської та зарубіжної селекції. Виявлено 13 алелей серед зразків озимої пшениці і 11 – серед зразків ярої пшениці. Це в цілому менше, ніж в країнах Європи, Азії та Африки. Серед досліджених зразків виявлено 36 різних генотипів. Найбільш часто серед зразків озимої пшениці зустрічаються сорти і лінії, що володіють генотипами Glu-A1с, Glu-B1с, Glu-D1d (16,2 % від загальної кількості досліджених зразків); (Glu-A1a, Glu-B1с, Glu-D1d (13,7 %), Glu-A1b, Glu-B1с, Glu-D1d (12,7 %). Серед зразків ярої пшениці переважають сорти і лінії, що володіють генотипами Glu-A1a, Glu-B1с, Glu-D1d (22,5 %) Glu-A1a, Glu-B1с, Glu-D1a (16,4 %), Glu-A1с, Glu-B1f, Glu-D1d (13,3 %). У геномі лінії ярої пшениці КП-406/11 виявлено алель гена, що кодує Bx-субодиницю, максимальний ступінь ідентичності якого щодо представлених в базі даних GenBank нуклеотидних послідовностей Bx-субодиниць склав 99 %. Він містить відкриту рамку зчитування довжиною 2367 п.н. і має найбільший ступінь ідентичності з нуклеотидної послідовністю субодиниці Вх14. Амінокислотна послідовність довжиною 789, яка кодується даним алелем, відрізняється від Вх14 замінами амінокислотних залишків в трьох позиціях – 662, 780 і 788. Він отримав назву Вх14.1 (номер доступу в Genbank MH108092).

Ключові слова: яровая пшеница, озимая пшеница, глютенины, хлебопекарные качества зерна Bx-субъединица
яра пшениця, озима пшениця, глютенін, хлібопекарські якості зерна, Bx-субодиниця

Цитологія і генетика 2019, том 53, № 4, C. 20-33

  • Институт генетики и цитологии НАН Беларуси, Республика Беларусь, 220072, Минск, ул. Академическая, 27

E-mail: E.Fomina igc.by, S.Malyshev igc.by, xaccka gmail.com, cytoplasmic mail.ru, O.Urbanovich igc.by

Фомина Е.А., Малышев С.В., Шилова А.А., Левданский О.Д., Урбанович О.Ю. Изучение аллельного разнообразия генов hmw глютенинов сортов и линий пшеницы, используемых в селекционном процессе в Республике Беларусь, с помощью пцр маркеров, Цитологія і генетика., 2019, том 53, № 4, C. 20-33.

В "Cytology and Genetics". Якщо тільки можливо, цитуйте статтю по нашій англомовній версії:
A. A. Famina, S. V. Malyshev, A.A. Shylava, A. D. Liaudanski, O. Yu. Urbanovich Study of Allelic Diversity of the Genes Encoding High Molecular Weight Glutenins in Wheat Varieties and Lines Utilized in the Breeding Process in the Republic of Belarus Using PCR Markers, Cytol Genet., 2019, vol. 53, no. 4, pp. 282–293
DOI: 10.3103/S0095452719040054


Посилання

1. Halford, N.G., Field, J.M., Blair, H., Urwin, P., Moore, K., Robert, L., Thompson, R., Flavell, R.B., Tatham, A.S., and Shewry, P.R., Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality, Theor. Appl. Genet., 1992, vol. 83, pp. 373–378. https://doi.org/10.1007/BF00224285

2. Shao, H., Liu, T.-H., Ran, C.-F., Li, L.Q., Yu, J., Gao, X., and Li, X.-J., Isolation and molecular characterization of two novel HMW-GS genes from Chinese wheat (Triticum aestivum L.) landrace Banjiemang, Genes Genom., 2015, vol. 37, pp. 45–53. https://doi.org/10.1007/s13258-014-0228-3

3. Payne, P.I., Corfield, K.G., and Blackman, J.A., Identification of a high molecular weight subunit of glutenin whose presence correlated with breadmaking quality in wheats of related pedigree, Theor. Appl. Genet., 1979, vol. 55, pp. 153–159. https://doi.org/10.1007/BF00295442

4. Gale, K.R., Diagnostic DNA markers for quality traits in wheat, J. Cereal Sci., 2004, vol. 41, pp. 181–192. https://doi.org/10.1016/j.jcs.2004.09.002

5. Bekes, F. and Wrigley, C.W., Gluten alleles and predicted dough quality for wheat varieties worldwide: a great resource—free on the AACC international website, Cereal Foods World, 2013, vol. 58, no. 6, pp. 325–328. https://doi.org/10.1094/CFW-58-6-0325

6. Ma, W., Zhang, W., and Gale, K.R., Multiplex-PCR typing of high molecular weight glutenin alleles in wheat, Euphytica, 2003, vol. 134, pp. 51–60. https://doi.org/10.1023/A:1026191918704

7. Laflandra, D., Tucci, G.F., Pavoni, A., Turchetta, T., and Margiotta, B., PCR analysis of x- and y-type genes present at the complex Glu-A1 locus in durum and bread wheat, Theor. Appl. Genet., 1997, vol. 94, pp. 235–240. https://doi.org/10.1007/s001220050405

8. Yan, Z., Dai, S., Liu, D., Wei, Y., Wang, J., and Zheng, Y., Isolation and characterization of a novel Glu-Bx HMW-GS allele from Tibet bread wheat landrace, Int. J. Agric. Res., 2009, vol. 4, no. 1, pp. 38–45. https://doi.org/10.3923/ijar.2009.38.45

9. Payne, P.I., Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality, Ann. Rev. Plant Physiol., 1987, vol. 38, pp. 141–153. https://doi.org/10.1146/annurev.pp.38.060187.001041

10. Ahmad, M., Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers, Theor. Appl. Genet., 2000, vol. 101, pp. 892–896. https://doi.org/10.1007/s001220051558

11. Tishchenko, V.N., Chekalin, N.M., Panchenko, I.A., and Didenko, S.Yu., Polymorphism of glutenins in the varieties of winter wheat of the Poltava selection, Visn. Poltava State Agrar. Acad., 2006, vol. 3, pp. 5–9.

12. Morgun, V.V., Tarasyuk, O.I., Pochinok, V.M., and Rybalka, A.I., Original genetic variability in alleles of Glu loci for wheat selection for grain quality, Proc. BSU, 2014, vol. 9, no. 1, pp. 141–147.

13. Kozub, N.A., Sozinov, I.A., Sobko, T.A., Kolyuchii, V.T., Kuptsov, S.V., and Sozinov, A.A., Variation at storage protein loci in winter common wheat cultivars of the central forest–steppe of Ukraine, Cytol. Genet., 2009, vol. 43, no. 1, pp. 55–62. https://doi.org/10.3103/S0095452709010101

14. Moczulski, M. and Salmanowicz, B.P., Multiplex PCR identification of wheat HMW glutenin subunit genes by allele-specific markers, J. Appl. Genet., 2003, vol. 44, no. 4, pp. 459–471.

15. Fan, X., Song, Z.J., Kang, H.Y., Yang, R.W., and Zhou, Y.H., Identification and characterization of HMW glutenin subunits and their coding sequences in dwarfing Polish wheat, Int. J. Agric. Res., 2009, vol. 4, no. 8, pp. 237–249. https://doi.org/10.3923/ijar.2009.237.249

16. Tsenov, N., Atanasova, D., Todorov, I., Ivanova, I., and Stoeva, I., Allelic diversity in Bulgarian winter wheat varieties based on polymorphism of glutenin subunit composition, Cer. Res. Commun., 2009, vol. 37, no. 4, pp. 551–558. https://doi.org/10.1556/CRC.37.2009.4.8

17. Atanasova, D., Tsenov, N., Todorov, I., and Ivanova, I., Glutenin composition of winter wheat varieties bred in Dobrudzna Agricultural Institute, Bulgar. J. Agric. Sci., 2009, vol. 15, no. 1, pp. 9–19.

18. Vaiciulyte-Funk, L., Juodeikiene, G., and Bartkiene, E., The relationship between wheat baking properties, specific high molecular weight glutenin components and characteristics of varieties, Zemdirbyste-Agric., 2015, vol. 102, no. 2, pp. 229–238. https://doi.org/10.13080/za.2015.102.030

19. Bradová, J. and Štočková, L., Evaluation of winter wheat collection in terms of HMW- and LMW glutenin subunits, Czech J. Genet. Plant Breed., 2010, vol. 46, pp. 96–99. https://doi.org/10.17221/2448-CJGPB

20. Chňapek, M., Tomka, M., Peroutková, R., and Gálová, Z., Polymorphism of HMW-GS in collection of wheat genotypes, Int. J. Biol., Biomol. Agric. Food Biotechnol. Eng., 2014, vol. 8, no. 7, pp. 652–657.

21. Baracskai, I., Balázs, G., Li, L., Ma, W., Oszvald, M., Newberry, M., Tomoskozi, S., Láng, L., Bedö, Z., and Békés, F., A retrospective analysis of HMW and LMW glutenin alleles of cultivars bred in Martonvasar, Cereal Res. Commun., 2011, vol. 39, no. 2, pp. 225–236. https://doi.org/10.1556/CRC.39.2011.2.6

22. Branlard, G., Dardevet, M., Amiour, N., and Igrejas, G., Allelic diversity of HMW and LMW glutenin subunits and omega-gliadins in French bread wheat (Triticum aestivum L.), Gen. Res. Crop Evol., 2003, vol. 50, pp. 669–679. https://doi.org/10.1023/A:1025077005401

23. Zarghani, E. and Imamjomeh, A., Assesment of genetic diversity in high-molecular-weight glutenin subunits and relationship to breed-making quality in common wheat, Trakia J. Sci., 2011, vol. 9, no. 1, pp. 37–42.

24. Tahir, N.A., Evaluation of hexaploid wheat varieties for making bread by high molecular weight (HMW) and low molecular weight (LMW) analysis, Jordan J. Biol. Sci., 2009, vol. 2, pp. 55–62.

25. Tabasum, A., Iqbal, N., Hameed, A., and Arshad, R., Evaluation of Pakistani wheat germplasm for bread quality based on allelic variation in HMW glutenin subunits, Pak. J. Bot., 2011, vol. 43, no. 3, pp. 1735–1740.

26. Yasmeen, F., Khurshid, H., and Ghafoor, A., Genetic divergence for high-molecular weight glutenin subunits (HMW-GS) in indigenous landraces and commercial cultivars of bread wheat of Pakistan, Genet. Mol. Res, 2015, vol. 14, no. 2, pp. 4829–4839. https://doi.org/10.4238/2015.May.11.15

27. Kaur, A., Singh, N., Ahlawat, A.K., Kaur, S., Singh, A.M., Chauhan, H., and Singh, G.P., Diversity in grain, flour, dough and gluten properties amongst Indian wheat cultivars varying in high molecular weight subunits (HMW-GS), Food Res. Int., 2013, vol. 53, pp. 63–72. https://doi.org/10.1016/j.foodres.2013.03.009

28. He, Z.H., Liu, L., Xia, X.C., Liu, J.J., and Pena, R.J., Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats, Cereal Chem., 2005, vol. 82, no. 4, pp. 345–350. https://doi.org/10.1094/CC-82-0345

29. Liu, Y., Xiong, Z.Y., He, Y.G., Shewry, P.R., and He, G.Y., Genetic diversity of HMW glutenin subunit in Chinese common wheat (Triticum aestivum L.) landraces from Hubei province, Genet. Res. Crop Evol., 2007, vol. 54, pp. 865–874. https://doi.org/10.1007/s10722-006-9154-9

30. Dessalegn, T., Van Deventer, C.S., Labuschagne, M.T., and Martens, H., Allelic variation of HMW glutenin subunits of Ethiopian bread wheat cultivars and their quality, Afr. Crop Sci. J., 2011, vol. 19, no. 2, pp. 55–63. https://doi.org/10.4314/acsj.v19i2.69855

31. Bellil, I., Chekara Bouziani, M., and Khelifi, D., Genetic diversity of high and low molecular weight glutenin subunits in Saharan bread and durum wheats from Algerian oases, Czech. J. Genet. Plant Breed., 2012, vol. 48, no. 1, pp. 23–32. https://doi.org/10.17221/105/2011-CJGPB

32. Plaschke, J., Ganal, M.W., and Roder, M.S., Detection of genetic diversity in closely related bread wheat using microsatellite markers, Theor. Appl. Genet., 1995, vol. 91, pp. 1001–1007. https://doi.org/10.1007/BF00223912

33. Liu, S., Chao, S., and Anderson, J.A., New DNA markers for high molecular weight glutenin subunits in wheat, Theor. Appl. Genet., 2008, vol. 118, no. 1, pp. 177–183. https://doi.org/10.1007/s00122-008-0886-0

34. Schwarz, G., Felsenstein, F.G., and Wenzel, G., Development and validation of a PCR-based marker assay for negative selection of the HMW glutenin allele Glu-B1-1d (Bx-6) in wheat, Theor. Appl. Genet., 2004, vol. 109, no. 5, pp. 1064–1069. https://doi.org/10.1007/s00122-004-1718-5

35. Ragupathy, R., Naeem, H.A., Reimer, E., Lukow, O.M., Sapirstein, H.D., and Cloutier, S., Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit, Theor. Appl. Genet., 2008, vol. 116, pp. 283–296. https://doi.org/10.1007/s00122-007-0666-2

36. Lei, Z.S., Gale, K.R., He, Z.H., Gianibelli, C., Larroque, O., Xia, X.S., Butow, B.J., and Ma, W., Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat, J. Cer. Sci., 2006, vol. 43, pp. 94–101. https://doi.org/10.1016/j.jcs.2005.08.003

37. Payne, P.I., Nigtingale, M.A., Krattiger, A.F., and Holt, L.M., The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties, J. Sci. Food Agric., 1987, vol. 40, pp. 51–65. https://doi.org/10.1002/jsfa.2740400108

38. Rogers, W.J., Payne, P.I., and Harinder, K., The HMW glutenin subunit and gliadin compositions of Germany-grown wheat varieties and their relationship with bread-making quality, Plant Breed., 1989, vol. 103, pp. 89–100. https://doi.org/10.1111/j.1439-0523.1989.tb00356.x

39. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P., and Drummond, A., Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 2012, vol. 28, no. 12, pp. 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

40. Bekes, F., Cavanagh, C.R., Martinov, S., Bushuk, W., and Wrigley, C.W., The Gluten Composition of Wheat Varieties and Genotypes Part II. Composition Table for the HMW Subunits of Glutenin, 3rd ed.

41. McIntosh, R.A., Hart, G.E., Devos, K.M., Gale, M.D., and Rogers, W.J., Catalogue of Gene Symbols for Wheat, 1998.

42. Dobrotvorskaya, T.V. and Martynov, S.P., Analysis of diversity of Russian and Ukrainian bread wheat (Triticum aestivum L.) cultivars for high-molecular-weight glutenin subunits, Russ. J. Genet., 2011, vol. 47, no. 7, pp. 799–812. https://doi.org/10.1134/S1022795411070052

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 03.03.21