The certain cytosolic enzymes and recombinant proteins in methylotrophic yeast Komagatella phaffii expressed under methanolinduced promoters undergo selective degradation and proteolysis when transferred from methanol to glucose medium via autophagic pathway. However, the mechanism underlying the specific degradation cytosolic proteins in yeast, remain unclear. To this end, we developed a simple method for isolating mutants with impaired degradation of cytosolic proteins in our previous study. This method utilized the K. phaffii strain expressing βgalactosidase under the control of the methanolinduced FLD1 promoter, fused with GFP. The βgalactosidase of methanolgrown K. phaffii strain can be directly assayed on plates through XGal staining, therefore, offering an opportunity to isolate the mutants defective in inactivation of cytosolic proteins in K. phaffii. In this study, chemical mutagen NmethylN′nitroNnitrosoguanidine (MNNG) was applied to select autophagydefective mutants in this system. Mutants showing bule color on YPD plates with XGal after methanol induction were obtained. Selected mutans display higher specific activity of βgalactosidase shift from methanol to glucose compared to the wildtype strain. It was also observed that, after shift from methanol to glucose, the mutants exhibited stronger fluorescence compared to the parental strain. The specific activity of alcohol oxidase, which is involved in methanol metabolism, varies among the individual mutants. Additionally, the analyzed mutants exhibited growth defects under nitrogen starvation conditions and showed increased phloxine B staining, indicating impairments in general autophagy.
Keywords: βgalactosidase, MNNG, selective autophagy, Komagatella phaffii

Full text and supplemented materials
References
An, G.H., Schuman, D.B., and Johnson, E.A., Isolation of Phaffia rhodozyma mutants with increased astaxanthin content, Appl. Environ. Microbiol., 1989, vol. 55, pp. 116–124. https://doi.org/10.1128/aem.55.1.116-124
Bernauer, L., Radkohl, A., Lehmayer, L.G.K., and Emmerstorfer-Augustin, A., Komagataella phaffii as emerging model organism in fundamental research, Front. Microbiol., 2021, vol. 11, p. 607028. https://doi.org/10.3389/fmicb.2020.607028
Choi, A.M., Ryter, S.W., and Levine, B., Autophagy in human health and disease, N. Engl. J. Med., 2013, vol. 368, pp. 651–662. https://doi.org/10.1056/NEJMra1205406
Dmytruk, O., Bulbotka, N., and Sibirny, A., Degradation of Methanol Catabolism Enzymes of Formaldehyde Dehydrogenase and Formate Dehydrogenase in Methylotrophic Yeast Komagataella phaffii, Cytol. Genet., 2020, vol. 54, pp. 393–397. https://doi.org/10.3103/S0095452720050047
Dmytruk, O., Bulbotka N., Zazulya A., Semkiv M., Dmytruk K., and Sibirny A., Fructose-1,6-bisphosphatase degradation in the methylotrophic yeast Komagataella phaffii occurs in autophagy pathway, Cell Biol. Int., 2021, vol. 45, pp. 528–535. https://doi.org/10.1002/cbin.11304
Farré, J.C., Manjithaya, R., Mathewson, R.D., and Subramani, S., Pp Atg30 tags peroxisomes for turnover by selective autophagy, Dev. Cell, 2008, vol. 14, pp. 365–376. https://doi.org/10.1016/j.devcel.2007.12.011
Geng, J. and Klionsky, D.J., The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy Protein modifications: beyond the usual suspects’ review series, EMBO Rep., 2008, vol. 9, pp. 859–864. https://doi.org/10.1038/embor.2008
Gleeson, M.A., White, C.E., Meininger, D.P., and Komives, E.A., Generation of protease-deficient strains and their use in heterologous protein expression, Methods Mol. Biol., 1998, vol. 103, pp. 81–94. https://doi.org/10.1385/0-89603-421-6:81
Heistinger, L., Gasser, B., and Mattanovich, D., Microbe profile: Komagataella phaffii: a methanol devouring biotech yeast formerly known as Pichia pastoris, Microbiology, 2020, vol. 166, pp. 614–616. https://doi.org/10.1099/mic.0.000958
Kirkin, V. and Rogov, V.V., A diversity of selective autophagy receptors determines the specificity of the autophagy pathway, Mol. Cell, 2019, vol. 76, pp. 268–285. https://doi.org/10.1016/j.molcel.2019.09.005
Kirkin, V., McEwan, D.G., Novak, I., and Dikic, I., A role for ubiquitin in selective autophagy, Mol. Cell, 2009, vol. 34, pp. 259–269. https://doi.org/10.1016/j.molcel.2009.04.026
Klionsky, D.J., Cregg, J.M., Dunn, W.A., Emr, S.D., Sakai, Y., Sandoval, I.V., Sibirny, A.A., Subramani, S., Thumm, M., Veenhuis, M., and Ohsumi, Y., A unified nomenclature for yeast autophagy-related genes, Dev. Cell, 2003, vol. 5, pp. 539–545. https://doi.org/10.1016/s1534-5807(03)00296-x
Lowry, O., Rosebrough, N., Farr, A., and Randall, R., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.
Manjithaya, R., Nazarko, T.Y., Farré, J.C., and Subramani, S., Molecular mechanism and physiological role of pexophagy, FEBS Lett., 2010, vol. 584, pp. 1367–1373. https://doi.org/10.1016/j.febslet.2010.01.019
Mastropietro, G., Aw, R., and Polizzi, K.M., Expression of proteins in Pichia pastoris, Methods Enzymol., 2021, vol. 660, pp. 53–80. https://doi.org/10.1016/bs.mie.2021.07.004
Mizushima, N. and Komatsu, M., Autophagy: renovation of cells and tissues, Cell, 2011, vol. 147, pp. 728–741. https://doi.org/10.1016/j.cell.2011.10.026
Mizushima, N., Yoshimori, T., and Ohsumi, Y., The role of Atg proteins in autophagosome formation, Annu. Rev. Cell Dev. Biol., 2011, vol. 27, pp. 107–132. https://doi.org/10.1146/annurev-cellbio-092910-154005
Noda, T., Viability assays to monitor yeast autophagy, Methods Enzymol., 2008, vol. 451, pp. 27–32. https://doi.org/10.1016/S0076-6879(08)03202-3
Onodera, J. and Ohsumi, Y., Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation, J. Biol. Chem., 2005, vol. 280, pp. 31582–31586. https://doi.org/10.1074/jbc.M506736200
Pohl, C. and Dikic, I., Cellular quality control by the ubiquitin-proteasome system and autophagy, Science, 2019, vol. 366, pp. 818–822. https://doi.org/10.1126/science.aax3769
Polupanov, A.S. and Sibirny, A.A., Cytoplasmic extension peptide of Pichia pastoris glucose sensor Gss1 is not compulsory for glucose signaling, Cell Biol. Int., 2014, vol. 38, pp. 172–178. https://doi.org/10.1002/cbin.10189
Sibirny, A.A., Mechanisms of autophagy and pexophagy in yeasts, Biochemistry, 2011, vol. 76, pp. 1279–1290. https://doi.org/10.1134/S0006297911120017
Sibirny, A.A., Yeast peroxisomes: structure, functions and biotechnological opportunities, FEMS Yeast Res., 2016, vol. 16, pp. 3–4. https://doi.org/10.1093/femsyr/fow038
Tsukada, M. and Ohsumi, Y., Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae, FEBS Lett, 1993, vol. 333, pp. 169–174. https://doi.org/10.1016/0014-5793(93)80398-e
Waterham, H.R., de Vries, Y., Russel, K.A., Xie, W., Veenhuis, M., and Cregg, J.M., The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1, Mol. Cell Biol., 1996, vol. 16, pp. 2527–2536. https://doi.org/10.1128/MCB.16.5.2527
Zazulya, A.Z., Semkiv, M.V., Stec, M., Cyske, Z., Gaffke, L., Pierzynowska, K., Węgrzyn, G., and Sibirny, A.A., The Komagataella phaffii ACG1 gene, encoding β-1,6-N-acetylglucosaminyltransferase, is involved in the autophagy of cytosolic and peroxisomal proteins, Yeast, 2023, vol. 40, pp. 367–376. https://doi.org/10.1002/yea.3846