TSitologiya i Genetika 2025, vol. 59, no. 1, 74-75
Cytology and Genetics 2025, vol. 59, no. 1, 71–78, doi: https://www.doi.org/10.3103/S0095452725010104

Isolation of mutants defective in cytosolic β­galactosidase degradation in the methylotrophic yeast Komagatella phaffii

Mingxing Z., Dmytruk O., Dmytruk K., Kang Y., Sibirny A.

  1. Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, 79005, Ukraine
  2. State Key Laboratory of Functions and Applications of Medicinal Plants& Institution of One Health Research, Guizhou Medical University, Guizhou, 550014, Guiyang, China
  3. Institute of Biotechnology, University of Rzeszow, Rzeszow, 35­601 Poland

The certain cytosolic enzymes and recombinant proteins in methylotrophic yeast Komagatella phaffii expressed under methanol­induced promoters undergo selective degradation and proteolysis when transferred from methanol to glucose medium via autophagic pathway. However, the mechanism underlying the specific degradation cytosolic proteins in yeast, remain unclear. To this end, we developed a simple method for isolating mutants with impaired degradation of cytosolic proteins in our previous study. This method utilized the K. phaffii strain expressing β­galactosidase under the control of the methanol­induced FLD1 promoter, fused with GFP. The β­galactosidase of methanol­grown K. phaffii strain can be directly assayed on plates through X­Gal staining, therefore, offering an opportunity to isolate the mutants defective in inactivation of cytosolic proteins in K. phaffii. In this study, chemical mutagen N­methyl­N′­nitro­N­nitrosoguanidine (MNNG) was applied to select autophagy­defective mutants in this system. Mutants showing bule color on YPD plates with X­Gal after methanol induction were obtained. Selected mutans display higher specific activity of β­galactosidase shift from methanol to glucose compared to the wild­type strain. It was also observed that, after shift from methanol to glucose, the mutants exhibited stronger fluorescence compared to the parental strain. The specific activity of alcohol oxidase, which is involved in methanol metabolism, varies among the individual mutants. Additionally, the analyzed mutants exhibited growth defects under nitrogen starvation conditions and showed increased phloxine B staining, indicating impairments in general autophagy.

Keywords: β­galactosidase, MNNG, selective autophagy, Komagatella phaffii

TSitologiya i Genetika
2025, vol. 59, no. 1, 74-75

Current Issue
Cytology and Genetics
2025, vol. 59, no. 1, 71–78,
doi: 10.3103/S0095452725010104

Full text and supplemented materials

References

An, G.H., Schuman, D.B., and Johnson, E.A., Isolation of Phaffia rhodozyma mutants with increased astaxanthin content, Appl. Environ. Microbiol., 1989, vol. 55, pp. 116–124. https://doi.org/10.1128/aem.55.1.116-124

Bernauer, L., Radkohl, A., Lehmayer, L.G.K., and Emmerstorfer-Augustin, A., Komagataella phaffii as emerging model organism in fundamental research, Front. Microbiol., 2021, vol. 11, p. 607028. https://doi.org/10.3389/fmicb.2020.607028

Choi, A.M., Ryter, S.W., and Levine, B., Autophagy in human health and disease, N. Engl. J. Med., 2013, vol. 368, pp. 651–662. https://doi.org/10.1056/NEJMra1205406

Dmytruk, O., Bulbotka, N., and Sibirny, A., Degradation of Methanol Catabolism Enzymes of Formaldehyde Dehydrogenase and Formate Dehydrogenase in Methylotrophic Yeast Komagataella phaffii, Cytol. Genet., 2020, vol. 54, pp. 393–397. https://doi.org/10.3103/S0095452720050047

Dmytruk, O., Bulbotka N., Zazulya A., Semkiv M., Dmytruk K., and Sibirny A., Fructose-1,6-bisphosphatase degradation in the methylotrophic yeast Komagataella phaffii occurs in autophagy pathway, Cell Biol. Int., 2021, vol. 45, pp. 528–535. https://doi.org/10.1002/cbin.11304

Farré, J.C., Manjithaya, R., Mathewson, R.D., and Subramani, S., Pp Atg30 tags peroxisomes for turnover by selective autophagy, Dev. Cell, 2008, vol. 14, pp. 365–376. https://doi.org/10.1016/j.devcel.2007.12.011

Geng, J. and Klionsky, D.J., The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy Protein modifications: beyond the usual suspects’ review series, EMBO Rep., 2008, vol. 9, pp. 859–864. https://doi.org/10.1038/embor.2008

Gleeson, M.A., White, C.E., Meininger, D.P., and Komives, E.A., Generation of protease-deficient strains and their use in heterologous protein expression, Methods Mol. Biol., 1998, vol. 103, pp. 81–94. https://doi.org/10.1385/0-89603-421-6:81

Heistinger, L., Gasser, B., and Mattanovich, D., Microbe profile: Komagataella phaffii: a methanol devouring biotech yeast formerly known as Pichia pastoris, Microbiology, 2020, vol. 166, pp. 614–616. https://doi.org/10.1099/mic.0.000958

Kirkin, V. and Rogov, V.V., A diversity of selective autophagy receptors determines the specificity of the autophagy pathway, Mol. Cell, 2019, vol. 76, pp. 268–285. https://doi.org/10.1016/j.molcel.2019.09.005

Kirkin, V., McEwan, D.G., Novak, I., and Dikic, I., A role for ubiquitin in selective autophagy, Mol. Cell, 2009, vol. 34, pp. 259–269. https://doi.org/10.1016/j.molcel.2009.04.026

Klionsky, D.J., Cregg, J.M., Dunn, W.A., Emr, S.D., Sakai, Y., Sandoval, I.V., Sibirny, A.A., Subramani, S., Thumm, M., Veenhuis, M., and Ohsumi, Y., A unified nomenclature for yeast autophagy-related genes, Dev. Cell, 2003, vol. 5, pp. 539–545. https://doi.org/10.1016/s1534-5807(03)00296-x

Lowry, O., Rosebrough, N., Farr, A., and Randall, R., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

Manjithaya, R., Nazarko, T.Y., Farré, J.C., and Subramani, S., Molecular mechanism and physiological role of pexophagy, FEBS Lett., 2010, vol. 584, pp. 1367–1373. https://doi.org/10.1016/j.febslet.2010.01.019

Mastropietro, G., Aw, R., and Polizzi, K.M., Expression of proteins in Pichia pastoris, Methods Enzymol., 2021, vol. 660, pp. 53–80. https://doi.org/10.1016/bs.mie.2021.07.004

Mizushima, N. and Komatsu, M., Autophagy: renovation of cells and tissues, Cell, 2011, vol. 147, pp. 728–741. https://doi.org/10.1016/j.cell.2011.10.026

Mizushima, N., Yoshimori, T., and Ohsumi, Y., The role of Atg proteins in autophagosome formation, Annu. Rev. Cell Dev. Biol., 2011, vol. 27, pp. 107–132. https://doi.org/10.1146/annurev-cellbio-092910-154005

Noda, T., Viability assays to monitor yeast autophagy, Methods Enzymol., 2008, vol. 451, pp. 27–32. https://doi.org/10.1016/S0076-6879(08)03202-3

Onodera, J. and Ohsumi, Y., Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation, J. Biol. Chem., 2005, vol. 280, pp. 31582–31586. https://doi.org/10.1074/jbc.M506736200

Pohl, C. and Dikic, I., Cellular quality control by the ubiquitin-proteasome system and autophagy, Science, 2019, vol. 366, pp. 818–822. https://doi.org/10.1126/science.aax3769

Polupanov, A.S. and Sibirny, A.A., Cytoplasmic extension peptide of Pichia pastoris glucose sensor Gss1 is not compulsory for glucose signaling, Cell Biol. Int., 2014, vol. 38, pp. 172–178. https://doi.org/10.1002/cbin.10189

Sibirny, A.A., Mechanisms of autophagy and pexophagy in yeasts, Biochemistry, 2011, vol. 76, pp. 1279–1290. https://doi.org/10.1134/S0006297911120017

Sibirny, A.A., Yeast peroxisomes: structure, functions and biotechnological opportunities, FEMS Yeast Res., 2016, vol. 16, pp. 3–4. https://doi.org/10.1093/femsyr/fow038

Tsukada, M. and Ohsumi, Y., Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae, FEBS Lett, 1993, vol. 333, pp. 169–174. https://doi.org/10.1016/0014-5793(93)80398-e

Waterham, H.R., de Vries, Y., Russel, K.A., Xie, W., Veenhuis, M., and Cregg, J.M., The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1, Mol. Cell Biol., 1996, vol. 16, pp. 2527–2536. https://doi.org/10.1128/MCB.16.5.2527

Zazulya, A.Z., Semkiv, M.V., Stec, M., Cyske, Z., Gaffke, L., Pierzynowska, K., Węgrzyn, G., and Sibirny, A.A., The Komagataella phaffii ACG1 gene, encoding β-1,6-N-acetylglucosaminyltransferase, is involved in the autophagy of cytosolic and peroxisomal proteins, Yeast, 2023, vol. 40, pp. 367–376. https://doi.org/10.1002/yea.3846