TSitologiya i Genetika 2025, vol. 59, no. 1, 15-27
Cytology and Genetics 2025, vol. 59, no. 1, 11–23, doi: https://www.doi.org/10.3103/S0095452725010141

Genetic diversity of ukrainian populations of invasive species of the genus Galinsoga assessed by ISSR-markers

Tynkevich Y.O., Blyzniuk K.H., Ivanovych Y.I., Roshka N.M., Tokaryuk A.I., Shelyfist A.Y., Volkov R.A.

  1. Yuriy Fedkovych Chernivtsi National University, Kotsiubynsky str. 2, 58012 Chernivtsi, Ukraine
  2. Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden

SUMMARY. Two species of the genus Galinsoga, G. parviflora Cav. and G. quadriradiata Ruiz & Pav., are among the most successful invasive plants causing significant damage to natural and agroecosystems. Their natural distribution range extends from North to South America, and the adventitious part of the range includes all continents except Antarctica. Despite the practical importance of G. parviflora and G. quadriradiata, the genetic diversity of European populations of these species remains unexplored. In this work, we used ISSR markers to study Ukrainian populations of G. parviflora and G. quadriradiata and compared them with plants from Poland, Lithuania and Portugal. The results obtained indicate the low genetic diversity (Shannon index I = 0.124) of G. quadriradiata populations, which is probably due to the small size of the original population introduced to the Old World from America. At the same time, the level of genetic diversity in G. parviflora populations is significantly higher (I = 0.254). Some genotypes of G. parviflora have a wide geographical distribution, and at the same time, different genotypes occur in the same area. The data obtained are in good agreement with the hypothesis that escape from botanical gardens is the main source of origin of invasive species of the genus Galinsoga. Among the samples examined, several forms of hybrid nature were found, probably originating from a hybrid between G. parviflora and G. quadriradiata as a result of subsequent backcrossing with one of the parent species.

Keywords:

TSitologiya i Genetika
2025, vol. 59, no. 1, 15-27

Current Issue
Cytology and Genetics
2025, vol. 59, no. 1, 11–23,
doi: 10.3103/S0095452725010141

Full text and supplemented materials

Free full text: PDF  

References

AL-Kiyyam, M.A., Shibli, R.A., Zatimeh, A., Tahtamouni, R.W., AlQudah, T.S., and Hassan, S., Evaluation of genetic diversity in jordanian Solanum nigrum plants and genetic stability of in vitro grown plant using (AFLP) technique, Jordan J. Biol. Sci., 2024, vol. 17, no. 1. https://doi.org/10.54319/jjbs/170111

Baldwin, B.G., Wessa, B.L., and Panero, J.L., Nuclear rDNA evidence for major lineages of helenioid Heliantheae (Compositae), Syst. Bot., 2002, vol. 27, no. 1, pp. 161–198. https://doi.org/10.1043/0363-6445-27.1.161

Bublyk, O., Andreev, I., Kalendar, R., Spiridonova, K., and Kunakh, V., Efficiency of different PCR-based marker systems for assessment of Iris pumila genetic diversity, Biologia, 2013, vol. 68, no. 4, pp. 613–620. https://doi.org/10.2478/s11756-013-0192-4

Canne, J.M., The Systematics of the Genus Galinsoga (Compositae: Heliantheae), Ohio State Univ., 1976.

Canne, J.M., A revision of the genus Galinsoga (Compositae: Heliantheae), Rhodora, 1977, vol. 79, no. 819, pp. 319–389.

Canne, J.M., Cytological and morphological observations in Galinsoga and related genera (Asteraceae), Rhodora, 1983, vol. 85, no. 843, pp. 355–366.

China Plant BOL Group; Li, D.Z., Gao, L.M., Li, H.T., Wang, H., Ge, X.J., Liu, J.Q., Chen, Z.D., Zhou, S.L., Chen, S.L., Yang, J.B., Fu, C.X., Zeng, C.X., Yan, H.F., Zhu, Y.J., Sun, Y.S., Chen, S.Y., Zhao, L., Wang, K., Yang, T., and Duan, G.W., Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 49, pp. 19641–19646. https://doi.org/10.1073/pnas.1104551108

Damalas, C.A., Distribution, biology, and agricultural importance of Galinsoga parviflora (Asteraceae), Weed B-iol. Manage., 2008, vol. 8, no. 3, pp. 147–153. https://doi.org/10.1111/j.1445-6664.2008.00290.x

de Tomás, C. and Vicient, C.M., The genomic shock hypothesis: genetic and epigenetic alterations of transposable elements after interspecific hybridization in plants, Epigenomes, 2023, vol. 8, no. 1, p. 2. https://doi.org/10.3390/epigenomes8010002

Domblides, A. and Domblides, E., Rapid genetic assessment of carrot varieties based on AFLP analysis, J. Hortic., 2023, vol. 9, no. 3, p. 298. https://doi.org/10.3390/horticulturae9030298

Duistermaat, H., Gottschlich, G., Kadereit, J., Kilian, N., Rottensteiner, W.K., Uhlemann, I., Vitek, E., Vogt, R., and Wagenitz, G., Asteraceae Dumort. – Körbchenblütler, in Exkursionsflora für Istrien, Klagenfurt: Naturwissenschaftlicher Verein für Kärnten, 2014, pp. 770–774.

Earl, D.A. and von Holdt, B.M., STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method, Conserv. Genet. Resour., 2012, vol. 4, pp. 359–361. https://doi.org/10.1007/s12686-011-9548-7

Galera, H. and Sudnik-Wójcikowska, B., Central European botanic gardens as centres of dispersal of alien plants, Acta Soc. Bot. Pol., 2010, vol. 79, no. 2, pp. 147–156.

Galinsoga Ruiz and Pav. in GBIF, Secretariat GBIF Backbone Taxonomy, Checklist, 2023. https://doi.org/10.15468/39omei

Ghaffarian, S. and Mohammadi, S.A., Genetic diversity and population structure of Melissa officinalis L. from Iran as reveled by retrotransposon insertional polymorphism, Genet. Resour. Crop Evol., 2023, vol. 70, no. 8, pp. 2521–2532. https://doi.org/10.1007/s10722-023-01580-1

Gill, B.A., Musili, P.M., Kurukura, S., Hassan, A.A., Goheen, J.R., Kress, W.J., Kuzmina, M., Pringle, R.M., and Kartzinel, T.R., Plant DNA-barcode library and community phylogeny for a semi-arid East African savanna, Mol. Ecol. Resour., 2019, vol. 19, no. 4, pp. 838–846. https://doi.org/10.1111/1755-0998.13001

Gopinathan, M.C. and Babu, C.R., Cytogenetics of Galinsoga parviflora Cav. and G. ciliata (Raf.) Blake, and their natural hybrids (Asteraceae), New Phytol., 1982, vol. 91, no. 3, pp. 531–539. https://doi.org/10.1111/j.1469-8137.1982.tb03331.x

Gui, F.R., Wan, F.H., and Guo, J.Y., Determination of the population genetic structure of the invasive weed Ageratina adenophora using ISSR-PCR markers, Russ. J. Plant Physiol., 2009, vol. 56, no. 3, pp. 410–416. https://doi.org/10.1134/S1021443709030157

Haskell, G. and Marks, G.E., Chromosome ecology of British Galinsoga species, New Phytol., 1952, vol. 51, no. 3, pp. 382–387.

Heukels, H. and van der Meijden, R., Heukels’ Flora van Nederland 23e Druk, Wolters-Noordhoff, 2005.

Huangfu, C.H., Song, X.L., and Qiang, S., ISSR variation within and among wild Brassica juncea populations: implication for herbicide resistance evolution, Genet. Resour. Crop Evol., 2009, vol. 56, no. 7, pp. 913–924. https://doi.org/10.1007/s10722-009-9410-x

Ivanovych, Y. and Volkov, R., Genetic relatedness of sweet cherry (Prunus avium L.) cultivars from Ukraine determined by microsatellite markers, J. Hortic. Sci. Biotechnol., 2018, vol. 93, no. 1, pp. 64–72. https://doi.org/10.1080/14620316.2017.1342568

Ivanovych, Y.I., Udovychenko, K.M., Bublyk, M.O., and Volkov, R.A., ISSR-PCR fingerprinting of Ukrainian sweet cherry (Prunus avium L.) cultivars, Cytol. Genet., 2017, vol. 51, no. 1, pp. 40–47. https://doi.org/10.3103/s0095452717010066

Jursík, M., Soukup, J., Venclová, V., and Holec, J., Seed dormancy and germination of Shaggy soldier (Galinsoga ciliata Blake.) and Common lambsquarter (Chenopodium album L.), Plant Soil Environ., 2003, vol. 49, no. 11, pp. 511–518. https://doi.org/10.17221/4186-PSE

Kolter, A. and Gemeinholzer, B., Internal transcribed spacer primer evaluation for vascular plant metabarcoding, Metabarcoding Metagenomics, 2021, vol. 5, p. e68155. https://doi.org/10.3897/mbmg.5.68155

Kress, W.J., Wurdack, K.J., Zimmer, E.A., Weigt, L.A., and Janzen, D.H., Use of DNA barcodes to identify flowering plants, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 23, pp. 8369–8374. https://doi.org/10.1073/pnas.0503123102

Kucewicz, M. and Gojło, E., Influence of achene heteromorphism on life-cycle traits in the annual weed gallant soldier (Galinsoga parviflora Cav.), Flora, 2014, vol. 209, no. 11, pp. 649–654. https://doi.org/10.1016/j.flora.2014.08.010

Landjeva, S., Ganeva, G., Korzun, V., Palejev, D., Chebotar, S., and Kudrjavtsev, A., Genetic diversity of old bread wheat germplasm from the Black Sea region evaluated by microsatellites and agronomic traits, Plant Genet. Resour., 2015, vol. 13, no. 2, pp. 119–130. https://doi.org/10.1017/S1479262114000781

Li, X.C., Qi, S.Y., Yao, J., and Yang, L., Genetic diversity and differentiation of invasive plant Galinsoga quadriradiata populations in China, Chin. J. Ecol., 2015, vol. 34, no. 12, pp. 3306–3312.

Liu, R.L., Yang, Y.B., Lee, B.R., Liu, G., Zhang, W.G., Chen, X.Y., Song, X.J., Kang, J.Q., and Zhu, Z.H., The dispersal-related traits of an invasive plant Galinsoga quadriradiata correlate with elevation during range expansion into mountain ranges, AoB Plants, 2021, vol. 13, no. 3, p. plab008. https://doi.org/10.1093/aobpla/plab008

Mykhaletskyi, Y., structureHarvesterWebRunner, GitHub, 2024. https://github.com/yuremboo/structureHarvesterWebRunner.

Nei, M. and Li, W., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 10, pp. 5269–5273. https://doi.org/10.1073/pnas.76.10.5269

Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update, Bioinformatics, 2012, vol. 28, no. 19, pp. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460

Pelser, P.B., Kennedy, A.H., Tepe, E.J., Shidler, J.B., Nordenstam, B., Kadereit, J.W., and Watson, L.E., Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies, Am. J. Bot., 2010, vol. 97, no. 5, pp. 856–873. https://doi.org/10.3732/ajb.0900287

Perrier, X., Flori, A., and Bonnot, F., Data analysis methods, In Hamon, P., Seguin, M., Perrier, X., and Glaszmann, J.C., Eds., Genetic Diversity of Cultivated Tropical Plants, Enfield: Science Publ., 2003, pp. 43–76.

Pietrusiewicz, J., Domaciuk, M., and Bednara, J., Different pathways of embryo sac development in Galinsoga parviflora Cav., Acta Biol. Cracov., 2005, vol. 47, no. 1.

Porebski, S., Bailey, L.G., and Baum, B.R., Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components, Plant Mol. Biol. Rep., 1997, vol. 15, no. 1, pp. 8–15. https://doi.org/10.1007/BF02772108

POWO Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew, 2024. http://www.plantsoftheworldonline.org/.

Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, no. 2, pp. 945–959. https://doi.org/10.1093/genetics/155.2.945

Pysek, P., Prach, K., and Mandák, B., Invasions of alien plants into habitats of Central European landscape: an historical pattern, in Plant Invasions: Ecological Mechanisms and Human Responses, 1998, pp. 23–32.

Rabokon, A.M., Blume, R.Y., Sakharova, V.G., Chopei, M.I., Afanasieva, K.S., Yemets, A.I., Rakhmetov, B., Pirko, Y.V., and Blume, Y.B., Genotyping of interspecific Brassica rapa hybrids implying β-tubulin gene intron length polymorphism (TBP/cTBP) assessment, Cytol. Genet., 2023, vol. 57, no. 6, pp. 538–549.

Rieseberg, L.H., Chromosomal rearrangements and speciation, Trends Ecol. Evol., 2001, vol. 16, no. 7, pp. 351–358. https://doi.org/10.1016/s0169-5347(01)02187-5

Rivera, P., Villaseñor, J.L., Terrazas, T., and Panero, J.L., The importance of the Mexican taxa of Asteraceae in the family phylogeny, J. Syst. Evol., 2021, vol. 59, no. 5, pp. 935–952. https://doi.org/10.1111/jse.12681

Smith, A.L., Hodkinson, T.R., Villellas, J., et al., Global gene flow releases invasive plants from environmental constraints on genetic diversity, Proc. Natl. Acad. Sci. U. S. A., 2020, vol. 117, no. 8, pp. 4218–4227. https://doi.org/10.1073/pnas.1915848117

Smýkal, P., Bačová-Kerteszová, N., Kalendar, R., Corander, J., Schulman, A.H., and Pavelek, M., Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers, Theor. Appl. Genet., 2011, vol. 122, no. 7, pp. 1385–1397. https://doi.org/10.1007/s00122-011-1539-2

Tommasi, N., Biella, P., Guzzetti, L., Lasway, J.V., Njovu, H.K., Tapparo, A., Agostinetto, G., Peters, M.K., Steffan-Dewenter, I., Labra, M., and Galimberti, A., Impact of land use intensification and local features on plants and pollinators in Sub-Saharan smallholder farms, Agric. Ecosyst. Environ., 2021, vol. 319, no. 9, p. 107560. https://doi.org/10.1016/j.agee.2021.107560

Tunaitienė, V., Naugžemys, D., Patamsytė, J., and Žvingila, D., Gradient of genetic diversity of Erigeron annuus in the part of invasive European range, Bota Lith., 2015, vol. 21, no. 2, pp. 81–88. https://doi.org/10.1515/botlit-2015-0011

Twardovska, M.O., Drobyk, N.M., Mel’nyk, V.M., Konvalyuk, I.I., and Kunakh, V.A., Genome variability of some Gentiana L. species in nature and in culture in vitro: RAPD-analysis, Biopolym. Cell, 2010, vol. 26, no. 6, pp. 499–507. https://doi.org/10.7124/bc.00017A

Tynkevich, Y.O., Shelyfist, A.Y., Kozub, L.V., Hemleben, V., Panchuk, I.I., and Volkov, R.A., 5S ribosomal DNA of genus Solanum: molecular organization, evolution, and taxonomy, Front. Plant Sci., 2022, vol. 13, p. 852406. https://doi.org/10.3389/fpls.2022.852406

Tynkevich, Y.O., Yakobyshen, D.V., Cherkazianova, A.S., Shelyfist, A.Y., and Volkov, R.A., Intragenomic polymorphism of the ITS1-5.8S-ITS2 region in invasive species of the genus Reynoutria, Cytol. Genet., 2024, vol. 58, no. 6.

Varshney, R.K., Chabane, K., Hendre, P.S., Aggarwal, R.K., and Graner, A., Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys, Plant Sci., 2007, vol. 173, no. 6, pp. 638–649. https://doi.org/10.1016/j.plantsci.2007.08.010

Volkov, R.A., Borisjuk, N.V., Panchuk, I.I., Schweizer, D., and Hemleben, V., Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum, Mol. Biol. Evol., 1999, vol. 16, no. 3, pp. 311–320. https://doi.org/10.1093/oxfordjournals.molbev.a026112

Volkov, R.A., Kozeretska, I.A., Kyryachenko, S.S., Andreev, I.O., Maidanyuk, D.N., Parnikoza, I.Y., and Kunakh, V.A., Molecular evolution and variability of ITS1–ITS2 in populations of Deschampsia antarctica from two regions of the maritime Antarctic, Polar Sci., 2010, vol. 4, no. 3, pp. 469–478. https://doi.org/10.1016/j.polar.2010.04.011

Wang, Z., Wang, J.E., Wang, X.M., Gao, H.W., Dzyubenko, N.I., and Chapurin, V.F., Assessment of genetic diversity in Galega officinalis L. using ISSR and SRAP markers, Genet. Resour. Crop Evol., 2012, vol. 59, pp. 865–873. https://doi.org/10.1007/s10722-011-9727-0

Ward, S.M., Reid, S.D., Harrington, J., Sutton, J., and Beck, K.G., Genetic variation in invasive populations of yellow toadflax (Linaria vulgaris) in the western United States, Weed Sci., 2008, vol. 56, no. 3, pp. 394–399. https://doi.org/10.1614/WS-07-157.1

WFO World Flora Online, 2023. Available from: http://www.worldfloraonline.org/. Accessed August 14, 2024.

Xu, S.Z., Li, Z.Y., and Jin, X.H., DNA barcoding of invasive plants in China: A resource for identifying invasive plants, Mol. Ecol. Resour., 2018, vol. 18, no. 1, pp. 128–136. https://doi.org/10.1111/1755-0998.12715

Yang, J., Tang, L., Guan, Y.L., and Sun, W.B., Genetic diversity of an alien invasive plant Mexican sunflower (Tithonia diversifolia) in China, Weed Sci., 2012, vol. 60, no. 4, pp. 552–557. https://doi.org/10.2307/23363042

Yavorska, O., New records of some alien plants in the Kyiv urban area, Visn. Lviv Univ. Biol. Ser., 2008, vol. 48, pp. 44–48.

Ye, W.H., Li, J., Cao, H.L., and Ge, X.J., Genetic uniformity of Alternanthera philoxeroides in South China, Weed Res., 2003, vol. 43, no. 4, pp. 297–302. https://doi.org/10.1046/j.1365-3180.2003.00346.x

Ye, W.H., Mu, H.P., Cao, H.L., and Ge, X.J., Genetic structure of the invasive Chromolaena odorata in China, Weed Res., 2004, vol. 44, no. 2, pp. 129–135. https://doi.org/10.1111/j.1365-3180.2004.00381.x

Zhai, Q., Wang, W.B., Qu, B., and Shao, M.N., A supplementary study of two species of Galinsoga in the Liaoning Province, Bull. Bot. Res., 2018, vol. 38, no. 3, pp. 338–342.

Zhang, Q., Ye, J.F., Le, C.T., Njenga, D.M., Rabarijaona, N.R., Omollo, W.O., Lu, L.M., Liu, B., and Chen, Z.D., New insights into the formation of biodiversity hotspots of the Kenyan flora, Diversity Distrib., 2022, vol. 28, no. 12, pp. 2696–2711. https://doi.org/10.1111/ddi.13624

Zhang, W.G., Song, X.J., Petri, L., Liu, G., Chen, X.Y., Liu, R.L., Huang, F.F., Zou, J.B., and Zhu, Z.H., Elevated nitrogen and co-evolution history with competitors shape the invasion process of Galinsoga quadriradiata, J. Plant Ecol., 2024, vol. 17, no. 4, p. rtae047. https://doi.org/10.1093/jpe/rtae047