TSitologiya i Genetika 2021, vol. 55, no. 2, 56-67
Cytology and Genetics 2021, vol. 55, no. 2, 152–161, doi: https://www.doi.org/10.3103/S0095452721020055

Colocalization of BCR protein with clathrin, actin, and cortactin suggests its possible role in the regulation of actin branching and clathrin-mediated endocytosis

Gurianov D.S., Antonenko S.V., Telegeev G.D.

  • Institute of Molecular Biology and Genetics of NASU

SUMMARY. Philadelphia chromosome is a result of reciprocal translocation between chromosomes 9 and 22 and serves as a distinct marker of several types of myeloproliferative disorders. Such translocation generates different types of fusions of bcr and abl genes. These fusions differ in presence or absence of certain types of BCR domains and in molecular weight of corresponding chimeric proteins. BCR-ABLp230 is associated with chronic neutrophilic leukemia, BCR-ABLp210 – with chronic myelogenous leukemia, BCR-ABLp190 – with acute lymphoblastic leukemia. Pleckstrin homology domain of BCR is present in p210 and absent in p190 type of fusion protein. Mass-spectromic analysis previously identified 23 potential candidates for interaction with PH domain, including cortactin that is responsible for actin branching. In present work we show that BCR protein colocalized with actin and cortactin at K562 cells periphery. It also formed clusters of colocalization with clathrin and cortactin and was located at points of actin branching, which was shown by STED super-resolution microscopy and regular confocal microscopy of live HEK 293T cells. Live confocal microscopy also identified a relatively large structure in cytoplasm where dynamic comovement of BCR, clathrin and actin occurred. This strongly resembles Golgi complex, as trans-Golgi network is a typical location of clathrin-coated vesicle sorting and assembly. Our findings indicate that BCR in tandem with cortactin may have an important role in dynamic actin-membrane rearrangements that affect clathrin-mediated endocytosis and Golgi vesicular transport. The disruption of its function by abnormal tyrosine kinase activity of ABL may promote cancer phenotype.

Keywords: Bacillus subtilis, riboflavin, mutagenesis, phylogeny, UV radiation, producer strain

TSitologiya i Genetika
2021, vol. 55, no. 2, 56-67

Current Issue
Cytology and Genetics
2021, vol. 55, no. 2, 152–161,
doi: 10.3103/S0095452721020055

Full text and supplemented materials

References

1. Aigouy, B. and Mirouse, V., ScientiFig: a tool to build publication-ready scientific figures, Nat. Methods, 2013, vol. 10, p. 1048. https://doi.org/10.1038/nmeth.2692

2. Antonenko, S.V., Kravchuk, I.V., and Telegeev, G.D., Interaction of Bcl-Abl oncoprotein with the Glg1 protein in K562 cells: its role in the pathogenesis of chronic myeloid leukemia, Cytol. Genet., 2020. https://doi.org/10.3103/S0095452720010028

3. Bard, F. and Malhotra, V., The formation of TGN-to-plasma-membrane transport carriers, Annu. Rev. Cell Dev. Biol., 2006, vol. 22, pp. 439–455. https://doi.org/10.1146/annurev.cellbio.21.012704.133126

4. Birnboim, H.C. and Doly, J., A rapid alkaline extraction procedure for screening recombinant plasmid DNA, Nucleic Acids Res., 1979, vol. 7, pp. 1513–1523. https://doi.org/10.1093/nar/7.6.1513

5. Bolte, S. and Cordelieres, F.P., A guided tour into subcellular colocalization analysis in light microscopy, J. Microsc., 2006, vol. 224, pp. 213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x

6. Cao, H., Orth, J.D., Chen, J., et al., Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis, Mol. Cell Biol., 2003, vol. 23, pp. 2162–2170. https://doi.org/10.1128/MCB.23.6.2162-2170.2003

7. Cao, H., Weller, S., Orth, J.D., et al., Actin and Arf1-dependent recruitment of a cortactin–dynamin complex to the Golgi regulates post-Golgi transport, Nat. Cell Biol., 2005, vol. 7, pp. 483–492. https://doi.org/10.1038/ncb1246

8. Chen, J.L., Lacomis, L., Erdjument-Bromage, H., et al., Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes, FEBS Lett., 2004, vol. 566, pp. 281–286. https://doi.org/10.1016/j.febslet. 2004.04.061

9. Chen, L., Wang, Z.-W., Zhu, J., and Zhan, X., Roles of cortactin, an actin polymerization mediator, in cell endocytosis, Acta Biochim. Biophys. Sin. (Shanghai), 2006, vol. 38, pp. 95–103. https://doi.org/10.1111/j.1745-7270.2006.00141.x

10. Chen, P.H., Yao, H., and Huang, L.J.S., Cytokine receptor endocytosis: new kinase activity-dependent and -independent roles of PI3K, Front. Endocrinol. (Lausanne), 2017, vol. 8. https://doi.org/10.3389/fendo.2017.00078

11. Cho, Y.J., Cunnick, J.M., Yi, S.-.J., et al., Abr and Bcr, two homologous Rac GTPase-activating proteins, control multiple cellular functions of murine macrophages, Mol. Cell Biol., 2007, vol. 27, pp. 899–911. https://doi.org/10.1128/mcb.00756-06

12. Daboussi, L., Costaguta, G., and Payne, G.S., Phosphoinositide-mediated clathrin adaptor progression at the trans-Golgi network, Nat. Cell Biol., 2012, vol. 14, pp. 239–248. https://doi.org/10.1038/ncb2427

13. Dey, N., Blanc-Feraud, L., Zimmer, C., et al., Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution, Microsc. Res. Tech., 2006, vol. 69, pp. 260–266. https://doi.org/10.1002/jemt.20294

14. Emilia, G., Luppi, M., Marasca, R., and Torelli, G., Relationship between BCR/ABL fusion proteins and leukemia phenotype, Blood, 1997, vol. 89, pp. 3889–3889. https://doi.org/10.1182/blood.V89.10.3889.3889_3889_3889

15. Gordon, M.Y., Dowding, C.R., Riley, G.P., et al., Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia, Nature, 1988, vol. 328, pp. 342–344. https://doi.org/10.1038/328342a0

16. Groffen, J., Stephenson, J.R., Heisterkamp, N., et al., Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22, Cell, 1984, vol. 36, pp. 93–99. https://doi.org/10.1016/0092-8674 (84)90077-1

17. Gu, C., Yaddanapudi, S., Weins, A., et al., Direct dynamin–actin interactions regulate the actin cytoskeleton, EMBO J., 2010, vol. 29, pp. 3593–35606. https://doi.org/10.1038/emboj.2010.249

18. Holst, M.R., Vidal-Quadras, M., Larsson, E., et al., Clathrin-independent endocytosis suppresses cancer cell blebbing and invasion, Cell Rep., 2017, vol. 20, pp. 1893–1905. https://doi.org/10.1016/j.celrep.2017.08.006

19. Huang, S. and Wang, Y., Golgi structure formation, function, and post-translational modifications in mammalian cells, F1000Research, 2017, vol. 6, p. 2050. https://doi.org/10.12688/f1000research.11900.1

20. Kirkbride, K.C., Hong, N.H., French, C.L., et al., Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology, Cytoskeleton, 2012, vol. 69, pp. 625–643. https://doi.org/10.1002/cm.21051

21. Kirshner, H., Aguet, F., Sage, D., and Unser, M., 3-D PSF fitting for fluorescence microscopy: implementation and localization application, J. Microsc., 2013, vol. 249, pp. 13–25. https://doi.org/10.1111/j.1365-2818.2012.03675.x

22. Lemmon, M.A., Pleckstrin homology domains: not just for phosphoinositides, Biochem. Soc. Trans., 2004, vol. 32, pp. 707–711. https://doi.org/10.1042/BST0320707

23. Lemmon, M.A. and Ferguson, K.M., Signal-dependent membrane targeting by pleckstrin homology (PH) domains, Biochem. J., 2000, vol. 350, p. 1. https://doi.org/10.1042/0264-6021:3500001

24. Lemmon, M.A., Ferguson, K.M., and Abrams, C.S., Pleckstrin homology domains and the cytoskeleton, FEBS Lett., 2002, vol. 513, pp. 71–76.

25. Manders, E.M.M., Verbeek, F.J., and Aten, J.A., Measurement of co-localization of objects in dual-colour confocal images, J. Microsc., 1993, vol. 169, pp. 375–382. https://doi.org/10.1111/j.1365-2818.1993.tb03313.x

26. Mayinger, P., Regulation of Golgi function via phosphoinositide lipids, Semin. Cell Dev. Biol., 2009, vol., 20, pp. 793– 800. https://doi.org/10.1016/j.semcdb.2009.03.016

27. Miroshnychenko, D., Dubrovska, A., Maliuta, S., et al., Novel role of pleckstrin homology domain of the Bcr-Abl protein: analysis of protein-protein and protein-lipid interactions, Exp. Cell Res., 2010, vol. 316, pp. 530–542. https://doi.org/10.1016/j.yexcr.2009.11.014

28. Narayanan, A.S., Reyes, S.B., Um, K., et al., The Rac-GAP Bcr is a novel regulator of the Par complex that controls cell polarity, Mol. Biol. Cell, 2013, vol. 24, pp. 3857–3868. https://doi.org/10.1091/mbc.E13-06-0333

29. Sage, D., Donati, L., Soulez, F., et al., DeconvolutionLab2: an open-source software for deconvolution microscopy, Methods, 2017, vol. 115, pp. 28–41. https://doi.org/10.1016/j.ymeth.2016.12.015

30. Sauer, M.-L., Kollars, B., Geraets, R., and Sutton, F., Sequential CaCl2, polyethylene glycol precipitation for RNase-free plasmid DNA isolation, Anal. Biochem., 2008, vol. 380, pp. 310–314. https://doi.org/10.1016/j.ab.2008.05.044

31. Schindelin, J., Arganda-Carreras, I., Frise, E., et al., Fiji: an open source platform for biological image analysis, Nat. Methods, 2012, vol. 9, pp. 676–682. https://doi.org/10.1038/nmeth.2019.Fiji

32. Shannon, C.E., Communication in the presence of noise, Proc. IEEE, 1998, vol. 86, pp. 447–457. https://doi.org/10.1109/JPROC.1998.659497

33. Steen, W., Principles of Optics, Born, M. and Wolf, E., Eds., 7th ed. (expanded), Cambridge: Cambridge University Press, 1999, ISBN 0-521-64222-1. Opt Laser Technol 32:385. https://doi.org/10.1016/S0030-3992(00)00061-X

34. Underhill-Day, N., Pierce, A, Thompson, S.E., et al., Role of the C-terminal actin binding domain in BCR/ABL-mediated survival and drug resistance, Br. J. Haematol., 2006, vol. 132, pp. 774–783. https://doi.org/10.1111/j.1365-2141.2005.05949.x

35. Van Etten, R.A., The molecular pathogenesis of the Philadelphia-positive leukemias: implications for diagnosis and therapy, Cancer Treat. Res., 1993, pp. 295–325.

36. Van Etten, R.A., Aberrant cytokine signaling in leukemia, Oncogene, 2007, vol. 26, pp. 6738–6749. https://doi.org/10.1038/sj.onc.1210758

37. Waugh, M.G., The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer), Biochem. J., 2019, vol. 476, pp. 2321–2346. https://doi.org/10.1042/BCJ20180622

38. Weaver, A.M., Cortactin in tumor invasiveness, Cancer Lett., 2008, vol. 265, pp. 157–166. https://doi.org/10.1016/j.canlet.2008.02.066

39. Whittaker, E.T., XVIII. On the functions which are represented by the expansions of the interpolation—theory, Proc. R. Soc. Edinburgh, 1915, vol. 35, pp. 181–194. https://doi.org/10.1017/S0370164600017806

40. Yan, J., Wen, W., Xu, W., et al.,) Structure of the split PH domain and distinct lipid-binding properties of the PH-PDZ supramodule of alpha-syntrophin, EMBO J., 2005, vol. 24, pp. 3985–3995. https://doi.org/10.1038/sj.emboj.7600858

41. Yarar, D., Waterman-Storer, C.M., and Schmid, S.L., A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis, Mol. Biol. Cell, 2005, vol. 16, pp. 964–975. https://doi.org/10.1091/mbc.E04-09-0774

42. Zhu, J., Zhou, K., Hao, J.-J., et al., Regulation of cortactin/dynamin interaction by actin polymerization during the fission of clathrin-coated pits, J. Cell Sci., 2005, vol. 118, pp. 807–817. https://doi.org/10.1242/jcs.01668