TSitologiya i Genetika 2021, vol. 55, no. 1, 55-61
Cytology and Genetics 2021, vol. 55, no. 1, 47–52, doi: https://www.doi.org/10.3103/S0095452721010072

Genetic study of X-linked recessive ichthyosis in eastern Ukraine

Fedota O.M., Roshcheniuk L.V., Sadovnychenko I.O., Gontar J.V., Merenkova I.M., Vorontsov V.M., Ryzhko P.P.

  1. V.N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61022 Ukraine
  2. Communal Non-Profit Enterprise «Regional Clinical Dispensary for Skin and Venereal Diseases No. 1», 17 Blagovishchenska str., Kharkiv, 61052, Ukraine
  3. Kharkiv National Medical University, 4 Nauky ave., Kharkiv, 61022 Ukraine
  4. LLC «Medical Center IGR», 121B Pobedy ave., Kyiv, 03115 Ukraine
  5. Communal Non-Profit Enterprise «Kharkiv Municipal Maternity Hospital No. 1», 3B Otakara Yarosha str., Kharkiv, 61045 Ukraine

SUMMARY. X-linked recessive ichthyosis (OMIM 308100) is a form of ichthyosis that is caused by abnormal keratinization and can result in disability, social disadaptation and reduced quality of life of patients and their families. In most cases it is caused by a complete or partial deletion of the steroid sulfatase gene (STS). The study estimates the prevalence of X-linked recessive ichthyosis, inbreeding coefficient (or fixation index) FST and selection coefficient in people of eastern Ukraine (namely, Kharkiv region). Genealogical method was used to assess the genetic structure of fa-milies with a history of the disease. Fluorescent in situ hybridization (FISH) was performed to detect the deletion of the STS gene in patients and their relatives. The prevalence of the disease in eastern Ukraine was 1,5 · 10–4 males, with the interval between 4,9 · 10–5 and 4,9 · 10–4 ma-les in different districts and between 2,2 ∙ 10–4 males in the town of Krasnograd and 3,7 ∙ 10–3 males in a village of Balakliia district. A positive correlation was found between the load of X-linked recessive ichthyosis and the inbreeding coefficient Fst in all the studied districts (r = 0,976). For the past ten years, the inbreeding coeffi-cient Fst in most districts of the region increased 1,8 times and the prevalence of X-linked recessive ichthyosis increased 1,4–4,3 times. The clinical genealogical ana-lysis of 9 large families revealed no females with X-linked recessive ichthyosis among relatives of probands, but there were 21,4 % (n = 14) among first degree male relatives and 12,0 % (n = 25) among second degree male relatives. FISH study detected an interstitial deletion of the STS gene ish del(X)(p22.31p22.31)(STS-), but not gene KAL1 deletions in most of patients and their mothers from eastern Ukraine. Males with X-linked recessive ichthyosis had 2,5 times lower mean number of children per person than their healthy relatives, and they had prevalence of female offspring over males one in the ratio 3 : 1. Female obligate heterozygotes had both normal mean number of children per person and sex ratio in the offspring – 2,2 and 1 : 1, respectively.

Keywords: X-linked recessive ichthyosis, prevalence, inbreeding, deletion, STS gene

TSitologiya i Genetika
2021, vol. 55, no. 1, 55-61

Current Issue
Cytology and Genetics
2021, vol. 55, no. 1, 47–52,
doi: 10.3103/S0095452721010072

Full text and supplemented materials


Altukhov, Yu.P., Genetic Processes in Populations, Moscow: Akademkniga, 2003.

2. Amelina, S.S., Vetrova, N.V., Amelina, M.A., et al., The load and diversity of hereditary diseases in four raions of Rostov oblast, Russ. J. Genet., 2014, vol. 50, no. 1, pp. 82–90. https://doi.org/10.1134/S1022795414010025

3. Armitage, P., Berry, G., and Matthews, J.N.S., Statistical Methods in Medical Research, Malden: Blackwell Sci. Publ., 2002. https://doi.org/10.1002/9780470773666

4. Barrett, P., A review of consanguinity in Ireland—estimation of frequency and approaches to mitigate risks, Ir. J. Med. Sci., 2016, vol. 185, no. 1, pp. 17–28. https://doi.org/10.1007/s11845-015-1370-x

5. Caniueto, J., Ciria, S., Hernández-Martín, A., et al., Ana-lysis of the STS gene in 40 patients with recessive X‑linked ichthyosis: a high frequency of partial deletions in a Spanish population, J. Eur. Acad. Dermatol. Venereol., 2010, vol. 24, no. 10, pp. 1226–1229. https://doi.org/10.1111/j.1468-3083.2010.03612.x

6. Cavalli-Sforza, L.L. and Bodmer, W.F., The Genetics of Human Populations, San Francisco: Freeman, 1971.

7. Craig, W.Y., Robertson, M., Palomaki, G.E., et al., Prevalence of steroid sulfatase deficiency in California according to race and ethnicity, Prenat. Diagn., 2010, vol. 30, no. 9, pp. 893–898. https://doi.org/10.1002/pd.2588

8. Diociaiuti, A., Angioni, A., Pisaneschi, E., et al., Next generation sequencing uncovers a rare case of X-linked ichthyosis in an adopted girl homozygous for a novel nonsense mutation in the STS gene, Acta Derm. Venereol., 2019, vol. 99, no. 9, pp. 828–830. https://doi.org/10.2340/00015555-3162

9. Dmytruk, I.M., Makukh, H.V., Turkys, M.Y., and Kitsera, N.I., The polymorphisms of genes involved in DNA methylation in patients with malignancies from West Ukraine, Biopolym. Cell, 2016, vol. 32, no. 4, pp. 279–288. https://doi.org/10.7124/bc.00092A

10. Elias, P.M., Williams, M.L., Crumrine, D., and Schmuth, M., Inherited clinical disorders of lipid metabolism, Elias, P.M., Williams, M.L., Crumrine, D., and Schmuth, M., Eds., Curr. Probl. Dermatol., 2010, vol. 39, pp. 30– 88. https://doi.org/10.1159/000321084

11. Elias, P.M., Williams, M.L., Choi, E.H., and Feingold, K.R., Role of cholesterol sulfate in epidermal structure and function: lessons from X-linked ichthyosis, Biochim. Biophys. Acta, 2014, vol. 1841, no. 3, pp. 353–361. https://doi.org/10.1016/j.bbalip. 2013.11.009

12. Faisal, I. and Kauppi, L., Sex chromosome recombination failure apoptosis and fertility in male mice, Chromosoma, 2016, vol. 125, no. 2, pp. 227–235. https://doi.org/10.1007/s00412-015-0542-9

13. Fedota, O.M., Lysenko, N.G., Ruban, S.Y., et al., The effects of polymorphisms in growth hormone and growth hormone receptor genes on production and reproduction traits in Aberdeen-angus cattle (Bos taurus L., 1758), Cytol. Genet., 2017, vol. 51, no. 5, pp. 38–49. https://doi.org/10.3103/S0095452717050024

14. Fernandes, N.F., Janniger, C.K., and Schwartz, R.A., X‑linked ichthyosis: an oculocutaneous genodermatosis, J. Am. Acad. Dermatol., 2010, vol. 62, no. 3, pp. 480–485.https://doi.org/10.1016/j.jaad.2009.04.028

15. Friederike Kachel, A., Premo, L.S., and Hublin, J.-J., Grandmothering and natural selection, Proc. R. Soc. B, 2011, vol. 278, no. 1704, pp. 384–391. https://doi.org/10.1098/rspb.2010.1247

16. Hackl, E.V., Berest, V.P., and Gatash, S.V., Effect of cholesterol content on gramicidin s-induced hemolysis of erythrocytes, Int. J. Pept. Res. Ther., 2012, vol. 18, no. 2, pp. 163– 70. https://doi.org/10.1007/s10989-012-9289-9

17. Hedrick, P.W., What is the evidence for heterozygote advantage selection?, Trends Ecol. Evol., 2012, vol. 27, no. 12, pp. 698–704. https://doi.org/10.1016/j.tree.2012.08.012

18. Idkowiak, J., Taylor, A.E., Subtil, S., et al., Steroid sulfatase deficiency and androgen activation before and after puberty, J. Clin. Endocrinol. Metabol., 2016, vol. 101, no. 6, pp. 2545–2553. https://doi.org/10.1210/jc.2015-4101

19. Lichter, P. and Ried, T., Molecular analysis of chromosome aberrations. In situ hybridization, Methods Mol. Biol., 1994, vol. 29, pp. 449–478. https://doi.org/10.1385/0-89603-289-2:449

20. Mazereeuw-Hautieri, J., Hernández-Martíni, A., O’Toole, E.A., et al., Management of Congenital Ichthyoses: European Guidelines of Care, Part Two, Br. J. Dermatol., 2019, vol. 180, no. 3, pp. 484–495. https://doi.org/10.1111/bjd.16882

21. Mueller, J.W., Gilligan, L.C., Idkowiak, J., et al., The regulation of steroid action by sulfation and de-sulfation, Endocr. Rev., 2015, vol. 36, no. 5, pp. 526–563. https://doi.org/10.1210/er.2015-1036

22. Murtaza, G., Siddiq, S., Khan, S., et al., Molecular study of X-linked ichthyosis: report of a novel 2-bp insertion mutation in the STS and a very rare case of homozygous female patient, J. Dermatol. Sci., 2014, vol. 74, no. 2, pp. 165–167. https://doi.org/10.1016/j.jdermsci.2013.12.012

23. Oji, V., Ichthyosis vulgaris von X-chromosomal rezessiver Ichthyose unterscheiden, Hautnah Dermatologie, 2017, vol. 33, no. 5, pp. 40–43. doihttps://doi.org/10.1007/s15012-017-2523-6

24. Panchenko M.V., Shevchenko N.S., Demianenko M.V., et al., Features of the course and treatment of JIA-associated uveitis. J. Ophthalmol. (Ukraine). 2019, 2(487):22–7. https://doi.org/10.31288/pftalmolzh201922227

25. Radzinskij, V.E. and Totchiev, G.F., Mioma matki: kurs na organosokhranenie. Informatsionnyi byulleten’ (Uterine Fibroids: A Course on Organ Preservation Newsletter), Moscow: Red. Zh. StatusPraesens, 2014.

26. Relethford, J., Human population genetics, Hoboken, New Jersey: Wiley–Blackwell, 2012.

27. Rizner, T.L., The important roles of steroid sulfatase and sulfotransferases in gynecological diseases, Front Pharmacol., 2016, vol. 7, p. 30. https://doi.org/10.3389/fphar.2016.00030

28. Sánchez-Guijo, A., Neunzig, J., Gerber, A., et al., Role of steroid sulfatase in steroid homeostasis and characterization of the sulfated steroid pathway: evidence from steroid sulfatase deficiency, Mol. Cell Endocrinol., 2016, vol. 5, no. 437, pp. 142–153. https://doi.org/10.1016/j.mce.2016.08.019

29. Sukalo, A.V., Zhidko, L.B., and Lazar’, E.A., Vrozhdennyj ihtioz u detei (Congenital Ichthyosis in Children), Minsk: Belarus. Navuka, 2013.

30. Tatarchuk, T.F., Innovative approaches in obstetrics gyneco-logy and reproduction. Review of scientific practical conference, Health Woman, 2015, vol. 1 (97), pp. 33–35.

31. Toral-López, J., González-Huerta, L.M., and Cuevas-Covarrubias, S.A., Segregation analysis in X-linked ichthyosis: paternal transmission of the affected X‑chromosome, Brit. J. Derm., 2008, vol. 158, no. 4, pp. 818–820. https://doi.org/10.1111/j.1365-2133.2007.08405.x

32. Toral-López, J, González-Huerta, L.M., and Cuevas-Covarrubias, S.A., X linked recessive ichthyosis: current concepts, World J. Dermatol., 2015, vol. 2, no. 4 (3), pp. 129–134. https://doi.org/10.5314/wjd.v4.i3.129

33. Vorsanova, S.G., Jurov, Ju.B., and Chernyshov, V.N., Hromosomnyie sindromyi i anomalii. Klassifikatsiya i nomenklatura (Chromosomal Syndromes and Abnormalities. Classification and Nomenclature),Rostov-on-Don: Rostov. Gos. Univ., 1999.

34. Zerova-Lyubimova, T.E. and Gorovenko, N.G., Standarty analiza preparatov khromosom cheloveka (metodicheskie rekomendatsii) (Standards for the Analysis of Preparations of Human Chromosomes (Guidelines)), Kiev, 2003.