ISSN 0564-3783  

Main page
Information to authors
Editorial board
Mobile version

In Ukrainian

Export citations

General trends in organization and localization of crt-clusters in streptomycetes genomes

Polishchuk L.V., Lukyanchuk V.V.


SUMMARY. The purpose of the work is to identify the existence of general principles in organization of crt-clusters of streptomycetes and their localization in genomes; to prove similarity in the organization of crt-clusters in phylogenetically related strains. The nucleotide sequences of crt-clusters of 100 strains of streptomycetes were analyzed using BLASTN programs. A number of schemes for organizing crt-clusters in streptomycetes were found. Several main trends in localization and organization of streptomycete crt-clusters were formu-lated. he similarity of crt-cluster organizations in genomes of microorganisms belonging to different strains of same species of streptomycetes was shown. The ability to apply the organization of crp-clusters of Strep-tomyces (as an application to the genetic and phenotypic characteristics that are traditionally used) in the clas-sification of microorganisms within taxa of a lower order (clades, species, subspecies).

Key words: Streptomyces, crt-cluster, genome, scheme of cluster organization, BLASTN analysis

Tsitologiya i Genetika 2021, vol. 55, no. 2, pp. 40-47

  • Zabolotny Institute of Microbiology and Virology of the NAS of Ukraine, 03143, Kiev, st. Zabolotny, 154, Ukraine

E-mail: LVPolishchuk

Polishchuk L.V., Lukyanchuk V.V. General trends in organization and localization of crt-clusters in streptomycetes genomes, Tsitol Genet., 2021, vol. 55, no. 2, pp. 40-47.

In "Cytology and Genetics":
L. V. Polishchuk & V. V. Lukyanchuk General Trends in the Organization and Localization of crt-Clusters in Streptomyces Genomes, Cytol Genet., 2021, vol. 55, no. 2, pp. 138144
DOI: 10.3103/S0095452721020122


1. Abdel-Haliem, M.E., Sakr, A.A., Ali, M.F., et al., Characterization of Streptomyces isolates causing colour changes of mural paintings in ancient Egyptian tombs, Microbiol. Res., 2013.

2. Becerril, A., Alvarez, S., Braca, A.F., et al., Uncovering production of specialized metabolites by Streptomyces argillaceus: activation of cryptic biosynthesis gene clusters using nutritional and genetic approaches, PLoS One, 2018.

3. Bentley, S.D. and Parkhill, J., Comparative genomic structure of prokaryotes, Annu. Rev. Genet., 2004.

4. Bianchi, M.L., Grein, A., Julita, P., et al., Streptomyces mediolani (Arcamone et al.) emend. Bianchi et al. and its production of carotenoids, Z. Allg. Mikrobiol., 1970.

5. Conn, H.J. and Conn, J.E., Value of pigmentation in classifying Actinomycetes, J. Bacteriol., 1941.

6. Iftime, D., Kulik, A., Hurtner, T., et al., Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tu 365, J. Industr. Microbiol. Biotechnol., 2016.

7. Kato, F., Akazai, M., Tanaka, M., et al., Mechanism of photo chromogenicity in Streptomyces canus ISP5017, Actinomycetology, 1989.

8. Kato, F., Hino, T., Nakaji, A., et al., Carotenoid synthesis in Streptomyces setonii ISP5395 is induced by the gene crtS, whose product is similar to a sigma factor, Mol. Gen. Genet., 1995.

9. Kosyritzkaya, W.E. and Andreyuk, E.I., Production of lipids and carotinoids by yellow Streptomyces, Acta Biotechnol., 1984.

10. Krugel, H., Krubasik, P., Weber, K., et al., Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase, Biochim. Biophys. Acta, 1999.

11. Labeda, D.P., Goodfellow, M., and Brown, R., Phylogenetic study of the species within the family Streptomycetaceae, Antonie Van Leeuwenhoek, 2012.

12. Langeveld, S.A., van Mansfeld, A.D., Baas, P.D., et al., Nucleotide sequence of the origin of replication in bacteriophage phiX174 RF DNA, Nature, 1978.

13. Lee, H.S., Ohnishi, Y., and Horinouchi, S., A sigma B-like factor responsible for carotenoid biosynthesis in Streptomyces griseus, J. Mol. Microbiol. Biotechnol., 2001, vol. 3, no. 1, pp. 95101.

14. Matselyukh, B.P., Matselyukh, D.Ya., Golembiovska, S.L., et al., Isolation of Streptomyces globisporus and Blakeslea trispora mutants with increased carotenoid content, Mikrobiol. Z., 2013. UJRN/MicroBiol_2013_75_6_3

15. Matselyukh, B.P., Identity of carotenoid biosynthetic genes of Streptomyces and their activation in S. globisporus 1912-4Crt, J. Genet. Genom., 2019, vol. 3, no. 1, pp. 122126.

16. Myronovskyi, M., Tokovenko, B., Brötz, E., et al., Genome rearrangements of Streptomyces albus J1074 lead to the carotenoid gene cluster activation, Appl. Microbiol. Biotechnol., 2013.

17. Nefelova, M.V., Sverdlova, A.N., Feofilova, E.P., et al., Carotenoids synthesized by a culture of a mutant actinomycete strain, Mikrobiologiia, 1976, vol. 45, no. 2, pp. 306309.

18. Omura, S., Ikeda, H., Ishikawa, J., et al., Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites, Proc. Natl. Acad. Sci. U. S. A., 2001.

19. Polishchuk, L.V., Similarity and difference in crt-cluster organizations of strains from Streptomyces hygroscopicus clade, Slovak Int. Sci. J., 2018, vol. 1, no. 22, pp. 912.

20. Polishchuk, L.V., Organization of crt-clusters of 8 of strains of Streptomyces albus clade, Sci. Method., 2018a, vol. 1, no. 24, pp. 4043.

21. Polishchuk, L.V. and Lukyanchuk, V.V., Organization of crt-clusters of strains from the Streptomyces griseus group, in The 10th Congress of UTGiS Factors of Experimental Evolution of Organisms, Inst. Mol. Biol. Genet. Natl. Acad. Sci. Ukr., Uman, October 26, 2017.

22. Prozorov, A.A., Regularities of the location of genes having different functions and of some other nucleotide sequences in the bacterial chromosome, Microbiology, 2007.

23. Ravin, N.V. and Shestakov, S.V., The genomes of prokaryotes, Vavilov J. Genet. Breed., 2013, vol. 17, no. 4, pp. 972984.

24. Schumann, G., Nurnberger, H., Sandmann, G., et al., Activation and analysis of cryptic crt-genes for carotenoid biosynthesis from Streptomyces griseus, Mol. Gen. Genet., 2006.

25. Stackebrandt, E., Frederiksen, W., and Garrity, G.M., Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology, Int. J. Syst. Evol. Microbiol., 2002.

26. Takano, H., Asker, D., Beppu, T., et al., Genetic control for light-induced carotenoid production in non-phototrophic bacteria, J. Ind. Microbiol. Biotechnol., 2006.

27. Takano, H., The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria, Biosci. Biotechnol. Biochem., 2016.

28. Umeno, D.1., Tobias, A.V., and Arnold, F.H., Diversifying carotenoid biosynthetic pathways by directed evolution, Microbiol. Mol. Biol. Rev., 2005.

29. Wang, M., Yang, H., Gao, J.-L., et al., Breeding of high-yield lycopene producing strains of Streptomyces rimosus and studies on its flask culture conditions, China Biotecnol., 2009.

30. Waksman, S.A., On the classification of actinomycetes, J. Bacteriol., 1940.

31. Young, J.P., Crossman, L.C., and Johnston, A.W., The genome of Rhizobium leguminosarum has recognizable core and accessory components, Genome Biol., 2006.

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 21.09.21