TSitologiya i Genetika 2021, vol. 55, no. 4, 34-42
Cytology and Genetics 2021, vol. 55, no. 4, 324–330, doi: https://www.doi.org/10.3103/S0095452721040071

Analysis of CHD gene polymorphism as a model object for molecular sexing of eurasian owl (Bubo bubo)

Kulibaba R.O., Liashenko Yu.V.

  1. National University of Life and Environmental Sciences of Ukraine, 15, Heroiv Oborony Str., Kyiv, 03041, Ukraine
  2. The Institute of Animal Breeding, the National Academy of Agrarian Sciences of Ukraine, 1-A, Tvarynnykiv Str., Kharkiv, 61026, Ukraine

SUMMARY. The studies of CHD gene polymorphism as a model object for molecular sex determination of Bubo bubo (Eurasian eagle-owl) were carried out. The methods of PCR for amplification of the target regions of CHD gene, using P2/P8, 2550F/2718R, and 123L/1272H markers systems, restriction (PCR-RFLP) and heteroduplex methodological approaches were analyzed. It was shown that the use of P2/P8 markers system within PCR is efficient for avian sexing only under electrophoretic separation of the fragments in polyacrylamide gel. The application of 2550F/2718R and 123L/127H markers demonstrated their insufficient efficiency both in agarose and polyacrylamide gels, because of the impossibility to differentiate between genotypes CHDZZ and CHDZW. The presence of a polymorphic restriction site for HaeIII in CHDZ and CHDW fragments, amplified with primers P2/P8, has been proven. No polymorphic site has been detected for DdeI restriction endonuclease. High efficiency of heteroduplex analysis, based on P2/P8 markers system, for sexing individuals under electrophoretic distribution of the amplified fragments both in agarose and polyacrylamide gels was proven. In case of experimental samples, containing CHDZ and CHDW amplicons, the additional fragments of heteroduplex DNA were formed. The presence of the latter allowed determining the genotype of an individual accurately.

Keywords: Strigidae, Bubo bubo, polymorphism, polymerase chain reaction, restriction, heteroduplexes

TSitologiya i Genetika
2021, vol. 55, no. 4, 34-42

Current Issue
Cytology and Genetics
2021, vol. 55, no. 4, 324–330,
doi: 10.3103/S0095452721040071

Full text and supplemented materials


1. Barros, T.B., Fraga, R.E., Ramos, C.N., and Tomazi, L., Improvement of the molecular sexing of parrots. in the State of Bahia, Acta Biol. Paran., 2017, vol. 46, nos. 3–4, pp. 89–107. https://doi.org/10.5380/abpr.v46i0.56731

2. Bermudez-Humaran, L.G., Chavez-Zamarripa, P., Guzman-Velasco, A., Leal-Garza, C.H., and Montes de Oca-Luna, R., Loss of restriction site DdeI, used for avian molecular sexing, in Oreophasis derbianus, Reprod. Domest. Anim., 2002a, vol. 37, pp. 321–323. https://doi.org/10.1046/j.1439-0531.2002.00362.x

3. Bermudez-Humaran, L.G., Garcia-Garcia, A., Leal-Garza, C.H., Riojas-Valdes, V.M., Jaramillo-Rangel, G., and Montes-de-Oca-Luna, R., Molecular sexing of monomorphic endangered Ara birds, J. Exp. Zool., 2002b, vol. 292, no. 7, pp. 77–80. https://doi.org/10.1002/jez.10070

4. Cakmak, E., Peksen, C.A., and Bilgin, C.C., Comparison of three different primer sets for sexing birds, J. Vet. Diagn. Invest., 2017, vol. 29, no. 1, pp. 59–63. https://doi.org/10.1177/1040638716675197

5. Casey, A.E., Jones, K.L., Sandercock, B.K., and Wisely, S.M., Heteroduplex molecules cause sexing errors in a standard molecular protocol for avian sexing, Mol. Ecol. Res., 2009, vol. 9, pp. 61–65. doi . 2008.02307.xhttps://doi.org/10.1111/j.1755-0998

6. Corters, O., Barroso, A., and Dunner, S., Avian sexing: an optimized protocol using polymerase chain reaction–single-strand conformation polymorphism, J. Vet. Diagn. Invest., 1999, vol. 11, pp. 297–299. 10.1177/10406387990110031

7. Delgado, M.D. and Penteriani, V., Gender determination of Eurasian Eagle-Owls (Bubo bubo) by morphology, J. Raptor Res., 2004, vol. 38, pp. 375–377.

8. Ellegren, H., First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds, Proc. Biol. Sci., 1996, vol. 263, no. 1377, pp. 1635–1641. https://doi.org/10.1098/rspb.1996.0239

9. Fridolfsson, A. and Ellegren, H., A simple and universal method for molecular sexing of non-ratite birds, J. Avian Biol., 1999, vol. 30, pp. 116–121. https://doi.org/10.2307/3677252

10. Garcia, C.B., Insausti, J.A., Gil, J.A., Frutos, A., Alcantara, M., Gonzalez, J., Cortes, M.R., Bonafonte, J.I., and Arruga, M.V., Comparison of different procedures of DNA analysis for sex identification in the endangered bearded vulture (Gypaetus barbatus), Eur. J. Wild Res., 2009, vol. 55, pp. 309–312. https://doi.org/10.1007/s10344-008-0239-y

11. Griffiths, R., Daan, S., and Dijkstra, C., Sex identification in birds using two CHD genes, Proc. R. Soc. London B, 1996, vol. 263, pp. 1251–1256. https://doi.org/10.1098/rspb.1996.0184

12. Griffiths, R., Double, M., Orr, K., and Dawson, R., A DNA test to sex most birds, Mol. Ecol., 1998, vol. 7, pp. 1071–1075. https://doi.org/10.1046/j.1365-294x.1998.00389.x

13. Griffiths, R. and Tiwari, B., Sex of the last wild Spix’s macaw, Nature, 1995, vol. 375, p. 454. https://doi.org/10.1038/375454a0

14. Insee, J., Kamolnorranath, S., Baicharoen, S., Chumpadang, S., Sawasu, W., and Wajjwalku, W., PCR-based method for sex identification of eastern sarus crane (Grus antigone sharpii): implications for reintroduction programs in Thailand, Zool. Sci., 2014, vol. 31, pp. 95–100. https://doi.org/10.2108/zsj.31.9

15. Kahn, N.W., John, J.S.T., and Quinn, T.W., Chromosome-specific intron size differences in the avian CHD gene provide an efficient method for sex identification in birds, Auk, 1998, vol. 115, no. 4, pp. 1074–1078. https://doi.org/10.2307/4089527

16. Krüger, O., The evolution of reversed sexual size dimorphism in hawks, falcons and owls: a comparative study, Evol. Ecol., 2005, vol. 19, no. 5, pp. 467–486. https://doi.org/10.1007/s10682-005-0293-9

17. Lee, M.Y., Hong, Y.J., Park, S.K., Kim, Y.J., Choi, T.Y., Lee, H., and Min, M.S., Application of two complementary molecular sexing methods for East Asian bird species, Genes Genom., 2008, vol. 30, no. 4, pp. 365–372.

18. Mario Leyn-Ortega, M., del Mar Delgado, M., Martinez, J.E., Penteriani, V., and Calvo, J.F., Factors affecting survival in Mediterranean populations of the Eurasian eagle owl, Eur. J. Wild Res., 2016, vol. 62, pp. 643–651. https://doi.org/10.1007/s10344-016-1036-7

19. Mataragka, A., Balaskas, C., Sotirakoglou, K., and Ikonomopoulos, J., Comparative evaluation of the performance of the PCR assays commonly used for the determination of sex in avian species, J. King Saud. Univ.–Sci., 2020, vol. 32, pp. 228–234. https://doi.org/10.1016/j.jksus.2018.04.020

20. Medeiros, R.T., Chaves, F.G., Vecchi, M.B., Nogueira, D.M., and Alves, M.A.S., Molecular sexing and inter-sexual differences in the morphometry of the Hang-nest tody-tyrant Hemitriccus nidipendulus (Passeriformes: Rhynchocyclidae), Zoologia, 2019. https://doi.org/10.3897/zoologia.36.e32771

21. Miyaki, C.Y., Sex identification of parrots, toucans, and curassows by PCR: perspectives for wild and captive population studies, Zoo Biol., 1998, vol. 17, pp. 415–423. https://doi.org/10.1002/(SICI)1098-2361(1998)17:5<415::AID-ZOO6>3.0.CO;2-2

22. Patino, L., Cruz, M., Martinez, P., and Cedeno-Escobar, V., Using PCR-RFLP for sexing of the endangered Galapagos petrel (Pterodroma phaeopygia), Genet. Mol. Res., 2013, vol. 12, no. 2, pp. 4760–4767. https://doi.org/10.4238/2013.October.18.13

23. Penteriani, V., Alonso-Alvarez, C., del Mar Delgado, M., Sergio, F., and Ferrer, M., Brightness variability in the white badge of the eagle owl Bubo bubo, J. Avian Biol., 2006, vol. 37, no. 1, pp. 110–116. https://doi.org/10.1111/j.0908-8857.2006.03569.x

24. Ravindran, S., Saufi, S., Amni, W.N., Ishak, I., Hamid, N.H., Abidin, C.M.R.Z., Ahmad, A.H., Azzam, G., and Salim, H., Sex identification comparison of barn owls (Tyto alba javanica) using morphological features and molecular-based methods, Slovak Raptor J., 2018, vol. 12, pp. 47–54.https://doi.org/10.2478/srj-2018-0005

25. Ravindran, S., Woo, W.K., Saufi, S., Amni, W.N., Hamid, N.H., Abidin, C.M.R.Z., Ishak, I., Azzam, G., and Salim, H., Molecular sexing of Southeast Asian barn owl, Tyto alba javanica, using blood and feather, Trop. Life Sci. Res., 2019, vol. 30, no. 2, pp. 13–23. https://doi.org/10.21315/tlsr2019.30.2.2

26. Sacchi, P., Soglia, D., Maione, S., Meneguz, G., Campora, M., and Rasero, R., A non-invasive test for sex identification in short-toed Eagle (Circa etus gallicus), Mol. Cell Prob., 2004, vol. 18, no. 3, pp. 193–196. https://doi.org/10.1016/j.mcp.2004.01.002

27. Seidensticker, M.T., Holt, D.W., Detienne, J., Talbot, S., and Gray, K., Sexing young snowy owls, J. Raptor Res., 2011, vol. 45, no. 4, pp. 281–289. https://doi.org/10.3356/JRR-11-02.1

28. Tornberg, R., Mikkola, H., and Rytkönen, S., Morphometric sex determination of Great Grey Owls Strix nebulosa, Ornis Norvegica, 2016, vol. 39, pp. 6–10. https://doi.org/10.15845/on.v39i0.991

29. Valadan, R., Nejatollahi, F., Ehsaninori, H., Habibi, H., Amini, H., and Aliabadian, M., Avian gametologs as molecular tags for sex identification in birds of prey of Iran, Zoo Biol., 2017, vol. 36, no. 8, pp. 289–293. https://doi.org/10.1002/zoo.21363

30. Vucicevic, M., Stevanov-Pavlovic, M., Stevanovic, J., Bosnjak, J., Gajic, B., Aleksic, N., and Stanimirovic, Z., Sex determination in 58 bird species and evaluation of CHD gene as a universal molecular marker in bird sexing, Zoo Biol., 2013, vol. 32, pp. 269–276. https://doi.org/10.1002/zoo.21010

31. Wang, L.C., Severinghaus, L.L., Chen, C.T., Liu, L.Y., Pan, C.H., Huang, D., Lee, H.Y., Lir, J.T., Chin, S.C., and Pu, C.E., Sex identification of owls (family Strigidae) using oligonucleotide microarrays, J. Hered., 2008, vol. 99, no. 2, pp. 187–192. doi.org/https://doi.org/10.1093/jhered/esm107

32. Wang, P.H., Hsu, H.A., Chao, M.C., Chan, F.T., Wang, L.M., Lin, P.I., Tsao, H.S., Yuan, H.W., Chen, C.C., and Ding, S.T., Sex identification in the Collared Scops Owl (Otus bakkamoena) with novel markers generated by random amplified polymorphic DNA, Conserv. Genet Res., 2013, vol. 5, pp. 239–242. https://doi.org/10.1007/s12686-012-9778-3