TSitologiya i Genetika 2021, vol. 55, no. 1, 13-22
Cytology and Genetics 2021, vol. 55, no. 1, 10–18, doi: https://www.doi.org/10.3103/S0095452721010096

Application of 5S ribosomal DNA for molecular taxonomy of subtribe Loliinae (Poaceae)

Ishchenko O.O., Bednarska I.O., Panchuk І.І.

  1. Yuriy Fedkovych Chernivtsi National University Kotsiubynski str., 2, 58012 Chernivtsi, Ukraine
  2. Institute of Ecology of the Carpathians, National Academy of Sciences of Ukraine Kozelnytska str., 4, 79026 Lviv, Ukraine

SUMMARY. The genus Festuca L. (subtribe Loliinae), which embraces about 500 species, is one of the largest genera of the Poeae tribe and is distributed worldwide. The taxonomy of the genus Festuca and the subtribe Loliinae remains a subject of debate until now. Taking into account that the comparison of the 5S rDNA intergenic spacer (IGS) sequences is successfully used to estimate genetic distances between closely related plant taxa, we evaluated the possibility of its application in the study of the phylogeny of the Loliinae subtribe. Accordingly, we cloned and sequenced this region of F. ovina (subgenus Festuca) and F. carpatica (subgenus Leucopoa) genomes and compared them with the 5S rDNA of Lolium perenne and other members of the tribe Poeae. It was found that the genomes of F. ovina and F. carpatica contain only one structural class of 5S rDNA repeats. The level of the IGS similarity between the two studied Festuca species ranges from 80,2 to 81,7 %, and between these species and L. perenne – from 62,5 to 70,1 %. Species of the genera Festuca and Lolium form a highly-supported monophyletic group on the phylodendrogram, which indicates their origin from a common ancestor. The high rate of the IGS evolution allows using of this nuclear genome region in studies on the molecular taxonomy of the subtribe Loliinae.

Keywords: molecular evolution and taxonomy, intergenic spacer of 5S rDNA, Lolium, Festuca, Poeae

TSitologiya i Genetika
2021, vol. 55, no. 1, 13-22

Current Issue
Cytology and Genetics
2021, vol. 55, no. 1, 10–18,
doi: 10.3103/S0095452721010096

Full text and supplemented materials

References

1. Andreev, I.O., Spiridonova, E.V., Kyryachenko, S.S., et al., Population-genetic analysis of Deschampsia antarctica from two regions of Maritime Antarctica, Moscow Univ. Biol. Sci. Bull., 2010, vol. 65, no. 4, pp. 208–210. https://doi.org/10.3103/S0096392510040243

2. Barberá, P., Soreng, R.J., Peterson, P.M., et al., Molecular phylogenetic analysis resolves Trisetum (Poaceae: Pooideae: Koeleriinae) polyphyletic: evidence for a new genus, Sibirotrisetum and resurrection of Acrospelion, J. Syst. Evol., 2019, vol. 58, pp. 517–526.https://doi.org/10.1111/jse.12523

3. Baum, B.R. and Johnson, D.A., Lophopyrum Á. Löve (1980), Thinopyrum Á. Löve (1980), Trichopyrum Á. Löve (1986): one, two or three genera? A study based on the nuclear 5S DNA, Genet. Resour. Crop. Evol., 1986, vol. 65, pp. 161–186. https://doi.org/10.1007/s10722-017-0519-z

4. Catalán, P., Torrecilla, P., and Olmstead, R.G., Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences, Mol. Phylogenet. Evol., 2004, vol. 31, pp. 517–542.https://doi.org/10.1016/j.ympev.2003.08.025

5. Catalán, P., Torrecilla, P., Lypez-Rodríguez, J.A., et al., A systematic approach to subtribe Loliinae (Poaceae: Pooideae) based on phylogenetic evidence, Aliso, 2007, vol. 23, no. 1, pp. 380–405. https://doi.org/10.5642/aliso.20072301.31

6. Cheng, Y., Zhou, K., Humphreys, M.W., et al., Phylogenetic relationships in the Festuca-Lolium complex (Loliinae; Poaceae): new insights from chloroplast sequences, Front. Ecol. Evol., 2016, vol. 4, p. 89. https://doi.org/10.3389/fevo.2016.00089

7. Clayton, W.D. and Renvoize, S.A., Genera Graminum, in Grasses of the World, Kew Bull. Add. Ser., 1986, vol. 13, pp. 1–389.

8. Cloix, C., Tutois, S., Mathieu, O., et al., Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms, Genome Res., 2000, vol. 10, no. 5, pp. 679–690. https://doi.org/10.1101/gr.10.5.679

9. Darbyshire, S.J., Realignment of Festuca subgenus Schedonorus with the genus Lolium (Poaceae), Novon, 1993, vol. 3, pp. 239–343.

10. Davis, J.I. and Soreng, R.J., A preliminary phylogenetic analysis of the grass subfamily Pooideae (Poaceae), with attention to structural features of the plastid and nuclear genomes, including an intron loss in GBSSI, Aliso, 2007, vol. 23, pp. 335—348.

11. Devesa, J.A., Catalán P, Muller, J., et al., Checklist de Festuca L. (Poaceae) en la Península Ibérica, Lagascalia, 2013, vol. 33, no. 1, pp. 183–274.

12. Duvall, M.R., Burke, S.V., and Clark, D.C., Plastome phylogenomics of Poaceae: alternate topologies depend on alignment gaps, Bot. J. Linn. Soc., 2020, vol. 192, no. 1, pp. 9–20. https://doi.org/10.1093/botlinnean/boz060

13. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, vol. 32, no. 5, pp. 1792–1797. https://doi.org/10.1093/nar/gkh340

14. Foggi, B., Scholz, H., and Valdés, B., The Euro Med treatment of Festuca (Gramineae)—new names and new combinations in Festuca and allied genera, Willdenowia, 2005, vol. 35, no. 2, pp. 241–244.https://doi.org/10.3372/wi.35.35202

15. Garcia, S., Garnatje, T., and Kovarik, A., Plant rDNA database: ribosomal DNA loci information goes online, Chromosoma, 2012, vol. 121, no. 4, pp. 389–394. https://doi.org/10.1007/s00412-012-0368-7

16. Garcia, S., Wendel, J.F., Borowska-Zuchowska, N., et al., The utility of graph clustering of 5S ribosomal DNA homoeologs in plant allopolyploids, homoploid hybrids, and cryptic introgressants, Front. Plant Sci., 2020, vol. 11, p. 41. https://doi.org/10.3389/fpls.2020.00041

17. Gaut, B.S., Tredway, L.P., Kubik, C., et al., Phylogenetic relationships and genetic diversity among members of the Festuca-Lolium complex (Poaceae) based on ITS sequence data, Plant Syst. Evol., 2000, vol. 224, pp. 33–53. https://doi.org/10.1007/BF00985265

18. Givnish, T.J., Ames, M., McNeal, J.R., et al., Assembling the tree of the monocotyledons: Plastome sequence phylogeny and evolution of Poales, Ann. Missouri Bot. Gard., 2010, vol. 97, no. 4, pp. 584–616. https://doi.org/10.3417/2010023

19. Hodkinson, T.R., Evolution and taxonomy of the grasses (Poaceae): a model family for the study of species-rich groups, Ann. Rev. Plant Biol., 2018, vol. 1, no. 1, pp. 255—294. https://doi.org/10.1002/9781119312994.apr0622

20. Inda, L.A., Sanmartín, I., Buerki, S., et al., Mediterranean origin and Miocene-Holocene Old World diversification of meadow fescues and ryegrasses (Festuca subgenus Schedonorus and Lolium), J. Biogeogr., 2014, vol. 41, no. 3, pp. 600–614. https://doi.org/10.1111/jbi.12211

21. Ishchenko, O.O., Panchuk, I.I., Andreev, I.O., et al., Molecular organization of 5S ribosomal DNA of Deschampsia antarctica, Cytol. Genet., 2018a, vol. 52, no. 6, pp. 416–421. https://doi.org/10.3103/S0095452719010146

22. Ishchenko, O.O., Derevenko, T.O., and Panchuk, I.I., 5S rDNA of Timothy-grass Phleum pratense L., Sci. Her. Chernivtsi Univ. Biol. (Biol. Systems), 2018b, vol. 10, no. 2, pp. 107–112. https://doi.org/10.3186l/biosystems2018.02.107

23. Ishchenko, O.O. and Panchuk, I.I., Molecular organization of 5S rDNA of perennial ryegrass Lolium perenne L., Bull. Vavilov Soc. Genet. Breed. Ukr., 2018c, vol. 16, no. 2, pp. 166–173.https://doi.org/10.7124/visnyk.utgis.16.2.1054

24. Ishchenko, O.O., Mel’nyk, V.M., Parnikoza, I.Y., et al., Molecular organization of 5S ribosomal DNA and taxonomic status of Avenella flexuosa (L.) Drejer (Poaceae), Cytol. Genet., 2020, vol. 54, no. 6, pp. 505–513. https://doi.org/10.3103/S0095452720060055

25. Kolano, B.M., Cann, J., Oskedra, M., et al., Parental origin and genome evolution of several Eurasian hexaploid species of Chenopodium (Chenopodiaceae), Phytotaxa, 2019, vol. 392, no. 3, pp. 163–185. https://doi.org/10.11646/phytotaxa.392.3.1

26. Kopecký, D., Lukaszewski, A.J., and Doledžel, J., Cytogenetics of festulolium (Festuca x Lolium hybrids), Cytogen. Genom. Res., 2008, vol. 120, nos. 3–4, pp. 370–383. https://doi.org/10.1186/s12864-019-5766-2

27. Krawczyk, K., Nobis, M., Nowak, A., et al., Phylogenetic implications of nuclear rRNA IGS variation in Stipa L. (Poaceae), Sci. Rep., 2017, vol. 7, no. 1, pp. 1–11. https://doi.org/10.1038/s41598-017-11804-x

28. Nani, T.F., Cenzi, G., Pereira, D.L., et al., Ribosomal DNA in diploid and polyploid Setaria (Poaceae) species: number and distribution, Comp. Cytogenet., 2015, vol. 9, no. 4, pp. 645–660. https://doi.org/10.3897/CompCytogen.v9i4.5456

29. Peng, Y.Y., Wei, Y.M., Baum, B.R., et al., Molecular diversity of the 5S rRNA gene and genomic relationships in the genus Avena (Poaceae: Aveneae), Genome, 2008, vol. 51, no. 2, pp. 137–154. https://doi.org/10.1139/G07-111

30. Peterson, P.M., Romaschenko, K., Arrieta, Y.H., et al., A molecular phylogeny of the subtribe Sporobolinae and a classification of the subfamily Chloridoideae (Poaceae), Mem. NY Bot. Gard., 2017, vol. 118, pp. 127–151. https://doi.org/10.21135/893275341.003

31. Porebski, S., Bailey, L.G., and Baum, B.R., Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components, Plant Mol. Biol. Rep., 1997, vol. 15, no. 1, pp. 8–15.https://doi.org/10.1007/BF02772108

32. Rodrigues, J., Viegas, W., and Silva, M., 45S rDNA external transcribed spacer organization reveals new phylogenetic relationships in Avena genus, PLoS One, 2017, vol. 12, no. 4, e0176l70. https://doi.org/10.1371/journal.pone.0176 170

33. Röser, M., Winterfeld, G., Grebenstein, B., et al., Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae), Mol. Phylogen. Evol., 2001, vol. 21, no. 2, pp. 198–217. https://doi.org/10.1006/mpev.2001.1003

34. Saarela, J.M., Liu, Q., Peterson, P.M., et al., Phylogenetics of the grass ‘Aveneae-type plastid DNA clade’ (Poaceae: Pooideae, Poeae) based on plastid and nuclear ribosomal DNA sequence data, in Diversity, Phylogeny, and Evolution in the Monocotyledons, Aarhus: Aarhus Univ. Press, 2010.

35. Saini, A. and Jawali, N., Molecular evolution of 5S rDNA region in Vigna subgenus Ceratotropis and its phylogenetic implications, Plant Syst. Evol., 2009, vol. 280, nos. 3–4, pp. 187–206. https://doi.org/10.1007/s00606-009-0178-4

36. Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning, New York: Cold Spring Harbor Laboratory, 1989.

37. Scoppola, A., Cardoni, S., Pellegrino, M., et al., Genetic diversity and taxonomic issues in Gastridium P. Beauv (Poaceae) inferred from plastid and nuclear DNA sequence analysis, BioRxiv, 2019, 817965. https://doi.org/10.1101/817965

38. Shelyfist, A.Y., Tynkevich, Y.O., and Volkov, R.A., Molecular organization of 5S rDNA of Brunfelsia uniflora (Pohl.) D. Don, Bull. Vavilov. Soc. Genet. Breed. Ukr., 2018, vol. 16, no. l, pp. 6l–68. https://doi.org/10.7124/visnyk.utgis.16.1.903

39. Shelyfist, A.Y., Yakobyshen, D.V., and Volkov, R.A., Molecular structure of 5S rDNA of Mandragora autumnalis Bertol., Bull. Vavilov. Soc. Genet. Breed. Ukr., 2019, vol. 17, no. 2, pp. 187–195. https://doi.org/10.7124/visnyk.utgis.17.2.1220

40. Simeone, M.C., Cardoni, S., Piredda, R., et al., Comparative systematics and phylogeography of Quercus section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation, Peer J., 2018, vol. 6, e5793. https://doi.org/10.7717/peerj.5793

41. Simon, L., Rabanal, F.A., Dubos, T., et al., Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana, Nucleic Acids Res., 2018, vol. 46, no. 6, pp. 3019–3033. https://doi.org/10.1093/nar/ gkyl63

42. Soreng, R.J., Davis, J.I., and Voionmaa, M.A., A phylogenetic analysis of Poaceae tribe Poeae sensu lato based on morphological characters and sequence data from three plastid-encoded genes: evidence for reticulation, and a new classification for the tribe, Kew Bull., 2007, vol. 62, no. 3, pp. 425–454.

43. Soreng, R.J., Peterson, P.M., Romschenko, K., et al., A worldwide phylogenetic classification of the Poaceae (Gramineae), J. Syst. Evol., 2015, vol. 53, no. 2, pp. 117–137. https://doi.org/10.1111/jse.12150

44. Stamatakis, A., RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 2014, vol. 30, no. 9, pp. 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

45. Thomas, H. and Humphreys, M.O., Progress and potential of interspecific hybrids of Lolium and Festuca, J. Agric. Sci., 1991, vol. 117, no. 1, pp. 1–8.

46. Thomas, H.M., Morgan, W.G., and Humphreys, M.W., Designing grasses with a future-combining the attributes of Lolium and Festuca, Euphytica, 2003, vol. 133, no. 1, pp. 19–26. https://doi.org/10.1023/A:1025694819031

47. Tkach, N., Schneider, J., Döring, E., et al., Phylogeny, morphology and the role of hybridization as driving force of evolution in grass tribes Aveneae and Poeae (Poaceae), BioRxiv, 2019, 707588. https://doi.org/10.1101/707588

48. Torrecilla, P. and Catalán, P., Phylogeny of broad-leaved and fine-leaved Festuca lineages (Poaceae) based on nuclear ITS sequences, Syst. Bot., 2002, vol. 27, no. 2, pp. 241–251. https://doi.org/10.1043/0363-6445-27.2.241

49. Tynkevich, Y.O. and Volkov, R.A., Structural organization of 5S ribosomal DNA in Rosa rugosa, Cytol. Genet., 2014, vol. 48, no. 1, pp. 1–6. https://doi.org/10.3103/S0095452714010095

50. Tynkevich, Y.O. and Volkov, R.A., 5S Ribosomal DNA of distantly related Quercus species: molecular organization and taxonomic application, Cytol. Genet., 2019, vol. 53, no. 6, pp. 459–466. https://doi.org/10.3103/S0095452719060100

51. Tynkevich, Y.O., Nevelska, A.O., et al., Organization and variability of the 5S rDNA intergenic spacer of Lathyrus venetus, Bull. Vavilov Soc. Genet. Breed. Ukr., 2015, vol. 13, no. 1, pp. 81–87.

52. Vaio, M., Mazzella, C., et al., Effects of the diploidisation process upon the 5S and 35S rDNA sequences in the allopolyploid species of the Dilatata group of Paspalum (Poaceae, Paniceae), Austral. J. Bot., 2019, vol. 67, no. 7, pp. 521–530. https://doi.org/10.1071/BT18236

53. Volkov, A.R. and Panchuk, I.I., 5S rDNA of Dactylis glomerata (Poaceae): molecular organization and taxonomic application, Bull. Vavilov. Soc. Genet. Breed. Ukr., 2014, vol. 12, no. 1, pp. 3–11.

54. Volkov, R.A., Panchuk, I.I., et al., Plant rDNA: organization, evolution, and using, Cytol. Genet., 2003, vol. 37, no. 1, pp. 68–72.

55. Volkov, R.A., Kozeretska, I.A., Kyryachenko, S.S., et al., Molecular evolution and variability of ITS1 and ITS2 in populations of Deschampsia antarctica from two regions of the Maritime Antarctic, Polar Sci., 2010, vol. 4, no. 3, pp. 469–478. https://doi.org/10.1016/j.polar.2010.04.011

56. Wang, W., Chen, S., Guo, W., et al., Tropical plants evolve faster than their temperate relatives: a case from the bamboos (Poaceae: Bambusoideae) based on chloroplast genome data, Biotech. Biotech. Equip., 2020, vol. 34, no. 1, pp. 482–493. https://doi.org/10.1080/13102818.2020.1773312

57. Yamada, T., Festuca, in Wild Crop Relatives: Genomic and Breeding Resources, Kole, C., Ed., Berlin: Springer, 2011, pp. 153–164.