ISSN 0564-3783  



Main page
Contacts
Themes
Archive  
Themes
Subscription
Information to authors
Editorial board
Mobile version


In Ukrainian

Export citations
UNIMARC
BibTeX
RIS





Evaluating diversity and breeding perspectives of ukrainian spring camelina genotypes

Blume R.Y., Rabokon A.N., Postovitova A.S., Demkovich A.Y., Pirko Y.V., Yemets A.I., Rakhmetov D.B., Blume Y.B.

 




SUMMARY. Camelina or false flax (Camelina sativa) is considered as one of the most perspective oilseed crops for oil-based biofuel production. It is known that the center of origin of false flax is located in Eastern Europe, were this species arised via polyploidisation or crossing between wild relatives from Camelina genus. As a result of such evolutionary event camelina possesses by low level of genetic diversity, what sets restrictions on breeding improvement of this crop. Despite number of investigations, focused on evaluation of camelina varieties genetic polymorphism, the diversity of Ukrainian cultivars has not been assessed yet, although this region is a part of camelina center of origin. Here we firstly report about complex evaluation of genetic similarity of Ukrainian camelina breeding lines and cultivars, as well as analysis of morphometric and yield parameters as well as fatty acid composition of their seed oil. According to the results of chromatographic analysis, two camelina genotypes represented particular interest (FEORZhYaF-2 and FEORZhYaFD) due to high content of fatty acids with short carbon chain (less than C18) in seed lipids. Additionally, genetic distances between investigated accessions were identified using ISSR, SSR and ILP (actin and β-tubulin) markers. Obtained data were compared with crop productivity and morphometric parameters to determine the most desirable genotype pairs for further cross breeding. Thus, different crossing combinations of breeding lines FEORZhYaF-2 and FEORZhYaFD with varieties Mirazh and Peremoha might theoretically result in heterosis exhibition in first generation. Described approach for assessment of camelina germplasm collections during breeding process could be considered as powerful tool for significant increasing of this oilseed improvement efficiency of improvement.

Key words: Brassicaceae, oilseeds, breeding, camelina, Camelina sativa, fatty acids, bio-jet fuel, heterosis, molecular markers, marker-assisted breeding

Tsitologiya i Genetika 2020, vol. 54, no. 5, pp. 54-74

  1. Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, Ukraine, 04123, Kyiv, Osypovskoho Str., 2a
  2. Educational and Scientific Center Institute of biology and medicine of Taras Shevchenko National University of Kyiv, Ukraine, 03022, Kyiv, Akademika Hlushkova Ave., 2
  3. MM Gryshko National Botanical Garden of National Academy of Sciences of Ukraine, Ukraine, 01014, Kyiv, Tymiriazevska Str., 1

E-mail: cellbio cellbio.freenet.viaduk.net; blume.rostislav gmail.com

Blume R.Y., Rabokon A.N., Postovitova A.S., Demkovich A.Y., Pirko Y.V., Yemets A.I., Rakhmetov D.B., Blume Y.B. Evaluating diversity and breeding perspectives of ukrainian spring camelina genotypes, Tsitol Genet., 2020, vol. 54, no. 5, pp. 54-74.

In "Cytology and Genetics":
R. Y. Blume, A. M. Rabokon, A. S. Postovoitova, A. Ye. Demkovich, Ya. V. Pirko, A. I. Yemets, D. B. Rakhmetov & Ya. B. Blume Evaluating the Diversity and Breeding Prospects of Ukrainian Spring Camelina Genotypes, Cytol Genet., 2020, vol. 54, no. 5, pp. 420436
DOI: 10.3103/S0095452720050084


References

1. Downey, R.K., The origin and description of the Brassica oilseed crops, in High and Low Erucic Acid Rapeseed Oils: Production, Usage, Chemistry, and Toxicological Evaluation, Kramer, J.K.G., Sauer, F.D., and Pigden, W.J., Eds., Toronto: Academic, 1983, pp. 120.

2. Carlson, A.S., Plant oils as feedstock alternatives to petroleuma short survey of potential oil crop platforms, Biochimie, 2009, vol. 91, pp. 665670. https://doi.org/10.1016/j.biochi.2009.03.021

3. Warwick, S.I., Brassicaceae in agriculture, in Genetics and Genomics of the Brassicaceae, Schmidt, R., and Bancroft, I., Eds., New York: Springer Science+Business Media, 2011, pp. 3365.

4. Warwick, S.I., Gugel, R., McDonald, T., and Falk, K.C., Genetic variation and agronomic potential of Ethiopian mustard (Brassica carinata) in western Canada, Genet. Resour. Crop. Evol., 2006, vol. 53, pp. 297312. https://doi.org/10.1007/s10722-004-6108-y

5. Marillia, E.F., Francis, T., Falk, K.C., Smith, M., and Taylor, D.C., Pallisers promise: Brassica carinata, an emerging western Canadian crop for delivery of new bio-industrial oil feedstocks, Biocatalysis Agricult. Biotechnol., 2014, vol. 3, no. 1, pp. 6574. https://doi.org/10.1016/j.bcab.2013.09.012

6. Gesch, R.W., Isbell, T.A., Oblath, E.A., Allen, B.L., Archer, D.W., Brown, J., Hatfield, J.L., Jabro, J.D., Kiniry, J.R., Long, D.S., and Vigil, M.F., Comparison of several Brassica species in the north central U.S. for potential jet fuel feedstock, Industr.Crop Prod., 2015, vol. 75, pp. 27. https://doi.org/10.1016/j.indcrop.2015.05.084

7. Moser, B.R., Camelina (Camelina sativa L.) oil as a biofuels feedstock: golden opportunity or false hope?, Lipid Technol., 2010, vol. 22, no. 12, pp. 270 273. https://doi.org/10.1002/lite.201000068

8. Berti, M., Gesch, R., Eynck, C., Anderson, J., and Cermak, S., Camelina uses, genetics, genomics, production, and management, Industr. Crop Prod., 2016, vol. 94, pp. 690710. https://doi.org/10.1016/j.indcrop.2016.09.034

9. Moser, B.R., Knothe, G., Vaughn, S.F., and Isbell, T.A., Production and evaluation of biodiesel from field pennycress (Thlaspi arvense L.) oil, Energy Fuels, 2009, vol. 23, pp. 41494155. https://doi.org/10.1021/ef900337g

10. McGinn, M., Phippen, W.B., Chopra, R., Bansal, S., Jarvis, B.A., Phippen, M.E., Dorn, K.M., Esfahanian, M., Nazarenus, T.J., Cahoon, E.B., Durrett, T.P., Marks, M.D., and Sedbrook, J.C., Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop, Plant Biotechnol. J., 2019, vol. 17, no. 4, pp. 776788. https://doi.org/10.1111/pbi.13014

11. Vollmann, J. and Eynck, C., Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering, Biotechnol. J., 2015, vol. 10, pp. 525535. https://doi.org/10.1002/biot.201400200

12. Zubr, J., Oil-seed crop: Camelina sativa, Industr.Crop Prod., 1997, vol. 6, pp. 113119. https://doi.org/10.1016/S0926-6690(96)00203-8

13. Frohlich, A., Rice, B., Evaluation of Camelina sativa oil as a feedstock for biodiesel production, Industr.Crop Prod., 2005, vol. 21, pp. 2531. https://doi.org/10.1016/j.indcrop.2003.12.004

14. Gugel, R.K., Falk, K.C., Agronomic and seed quality evaluation of Camelina sativa in western Canada, Can. J. Plant Sci., 2006, vol. 86, pp. 10471058. https://doi.org/10.4141/P04-081

15. The Biology of Camelina sativa (L.) Crantz (Camelina). A Companion Document to Directive 94-08 (Dir94-08), Assessment Criteria for Determining Environmental Safety of Plant with Novel Traits, CFIA, Plant Bio-Safety Office, Ottawa, ON, Canada, 2012. http://www.inspection.gc.ca/english/plaveg/bio/dir/ camelsate.shtml. Accessed April 4, 2013.

16. Obour, K.A., Sintim, Y.H., Obeng, E., and Jeliazkov, D.V., Oilseed camelina (Camelina sativa L. Crantz): production systems, prospects and challenges in the USA Great Plains, Adv. Plants Agric. Res., 2015, vol. 2, no. 2, 00043. https://doi.org/10.15406/apar. 2015.02.00043

17. Wittkop, B., Snowdon, R.J., and Friedt, W., Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe, Euphytica, 2009, vol. 170, pp. 131140. https://doi.org/10.1007/s10681-009-9940-5

18. Singh, S.P. and Singh, D., Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review, Renew. Sust. Energy Rev., 2010, vol. 14, pp. 200216. https://doi.org/10.1016/j.rser.2009.07.017

19. Atabani, A.E., Silitonga, A.S., Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., Badruddin, I.A., and Fayaz, H., Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production, Renew. Sustain. Ener. Rev., 2013, vol. 18, pp. 211245. https://doi.org/10.1016/j.rser.2012.10.01

20. Ratanapariyanuch, K., Clancy, J., Emami, S., Cutler, J., and Reaney, M.J.T., Physical, chemical, and lubricant properties of Brassicaceae oil, Eur. J. Lipid Sci. Technol., 2013, vol. 115, pp. 10051012. https://doi.org/10.1002/ejlt.201200422

21. Iskandarov, U., Kim, H.J., and Cahoon, E.B., Camelina: an emerging oilseed platform for advanced biofuels and bio-based materials, in Plants and BioEnergy, McCann, M.C., Buckeridge, M.S., and Cerpita N.C., Eds., New York: Springer, 2014, pp. 131140.https://doi.org/10.1007/978-1-4614-9329-7_8

22. Li, X., and Mupondwa, E., Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies, Sci. Total Environ., 2014, vol. 481, pp. 1726. https://doi.org/10.1016/j.sci-totenv.2014.02.003

23. Natelson, R.H., Wang, W.C., Roberts, W.L., and Ze-ring, K.D., Technoeconomic analysis of jet fuel production from hydrolysis, decarboxylation, and reforming of camelina oil, Biomass Bioenergy, 2015, vol. 75, pp. 2334. https://doi.org/10.1016/j.biombioe.2015.02.001

24. IATA 2015 Report on Alternative Fuels, 10th ed., 2016, MontrealGeneva: International Air Transport Association, ISBN 978-92-9252-870-6.

25. Faure, J.D., Tepfer, M., Camelina, a Swiss knife for plant lipid biotechnology, OCL, 2016, vol. 23, no. 5, D503. https://doi.org/10.1051/ocl/2016023

26. Weeks, D.P., Gene editing in polyploid crops: wheat, camelina, canola, potato, cotton, peanut, sugar cane, and citrus, Prog. Mol. Biol. Transl. Sci., 2017, vol. 149, pp. 6580. https://doi.org/10.1016/bs.pmbts.2017. 05.002

27. Yemets, A.I., Boychuk, Yu.N., Shysha, E.N., Rakhmetov, D.B., and Blume, Ya.B., Establishment of in vitro culture, plant regeneration, and genetic transformation of Camelina sativa,Cytol. Genet., 2013, vol. 47, no. 3, pp. 138144. https://doi.org/10.3103/S0095452713030031

28. Gehringer, A., Friedt, W., Lühs, W., and Snowdon, R.J., Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa), Genome, 2006, vol. 49, pp. 15551563. https://doi.org/10.1139/g06-117

29. Vollmann, J., Grausgruber, H., Stift, G., Dryzhyruk, V., and Lelley, T., Genetic diversity in Camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism, Plant Breed., 2005, vol. 124, pp. 446453. https://doi.org/10.1111/j.1439-0523.2005.01134.x

30. Ghamkhar, K., Croser, J., Aryamanesh, N., Campbell, M., Konkova, N., and Francis, C., Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses, Genome, 2010, vol. 53, no. 7, pp. 558567. https://doi.org/10.1139/G10-034

31. Manca, A., Galasso, I., Development of simple sequence repeat (SSR) markers in Camelina sativa (L.) Crantz, Minerva Biotec., 2010, vol. 22, pp. 4345.

32. Galasso, I., Manca, A., Braglia, L., Martinelli, T., Morello, L., and Breviario, D., hTBP: an approach based on intronlength polymorphism for the rapid isolation and characterization of the multiple members of the btubulin gene family in Camelina sativa (L.) Crantz, Mol. Breed., 2011, vol. 28, pp. 635645. https://doi.org/10.1007/s11032-010-9515-0

33. Manca, A., Pecchia, P., Mapelli, S., Masella, P., and Galasso, I, Evaluation of genetic diversity in a Camelina sativa (L.) Crantz collection using microsatellite markers and biochemical traits, Genet. Resour. Crop Evol., 2012, vol. 60, pp. 1223 1226. https://doi.org/10.1007/s10722-012-9913-8

34. Singh, R., Bollina, V., Higgins, E.E., Clarke, W.E., Eynck, C., Sidebottom, C. Gugel R., Snowdon, R., and Parkin, I.A.P., Single-nucleotide polymorphism identification and genotyping in Camelina sativa,Mol. Breed., 2015, vol. 35, no. 1, pp. 113.https://doi.org/10.1007/s11032-015-0224-6

35. Luo, Z., Brock, J., Dyer, J.M., Kutchan, T., Schachtman, D., Augustin, M., Ge, Y., Fahlgren, N., and Abdel-Haleem, H., Genetic diversity and population structure of a Camelina sativa spring panel, Front. Plant Sci., 2019, vol. 10, p. 184. https://doi.org/10.3389/fpls.2019.00184

36. Hutcheon, C., Ditt, R.F., Beilstein, M., Comai, L., Schroeder, J., Goldstein, E., Shewmaker, C.K., Nguyen, T., De Rocher, J., and Kiser, J. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes, BMC Plant Biol., 2010, vol. 10, p. 233. https://doi.org/10.1186/1471-2229-10-233

37. Kagale, S., Koh, C., Nixon, J., Bollina, V., Clarke, W.E., Tuteja, R., Spillane, C., Robinson, S.J., Links, M.G., Clarke, C., Higgins, E.E., Huebert, T., Sharpe, A.G., and Parkin, I.A., The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure, Nat. Commun., 2014, vol. 5, p. 3706. https://doi.org/10.1038/ncomms4706

38. Mándaková, T., Pouch, M., Brock, J.R., Al-Shehbaz, I.A., and Lysak, M.A., Origin and evolution of diploid and allopolyploid Camelina genomes were accompanied by chromosome shattering, Plant Cell, 2019, vol. 31, no. 11, pp. 25962612. https://doi.org/10.1105/tpc.19.00366

39. Chaudhary, R., Koh, C.S., Kagale, S., Tang, L., Wu, S.W., Lv, Z., Mason, A.S., Sharpe, A.G., Die-derichsen, A., and Parkin, I.A.P., Assessing diversity in the Camelina genus provides insights into the genome structure of Camelina sativa, G3: Genes, Genomes,Genet., 2020, vol. 10, no. 4, pp. 12971308. https://doi.org/10.1534/g3.119.400957

40. Kurasiak-Popowska, D., Tomkowiak, A., Czlopinska, M., Bocianowski, J., Weigt, D., and Nawracala, J., Analysis of yield and genetic similarity of Polish and Ukrainian Camelina sativa genotypes, Industr.Crop Prod., 2018, vol. 123, pp. 667675.https://doi.org/10.1016/j.indcrop.2018.07.001

41. Rakhmetov, D.B., Blume, Ya.B., Yemets, A.I., Boi-chuk, Yu.M., Andrushchenko, O.L., Vergun, O.M., and Rakhmetova, S.O., Camelina sativa (L.) Crantzvaluable oil plant, Plant Introduction, 2014, vol. 2, no. 62, pp. 5058.

42. Rakhmetov, D.B., Rahmetova, S.O., Boychuk, Yu.N., Blume, Ya.B., and Yemets, A.I., Physiological and morphological characteristics of new forms and varieties of spring false flax (Camelina sativa), Bull. Ukr. Soc. Genet. Breed., 2014, vol. 12, no. 1, pp. 6577.

43. Blume, R.Ya., Boychuk, Yu.M., Yemets, A.I., Rakhmetova, S.O., Blume, Ya.B., and Rakhmetov, D.B., Comparative analysis of fatty acid composition for oils from seeds of tyfon, oil radish and camelina breeding forms and varieties as perspective source for biodiesel production, Factors Exp. Evol. Organisms, 2018, vol. 18, pp. 6166.

44. Blume, R., Rakhmetov, D., Comparative analysis of oil fatty acid composition of Ukrainian spring Camelina sativa breeding forms and varieties as a perspective biodiesel source, Cruciferae Newslett., 2017, vol. 36, pp. 137.

45. Blume, R.Y., Lantukh, G.V., Levchuk, I.V., Rakhmetov, D.B., and Blume, Ya.B., Evaluation of potential biodiesel feedstocks from industrial Cruciferae: camelina, turnip rape, oil radish and tyfon, Open Agr. J., 2020, vol. 14 (in press).

46. Bayer, G.Ya., Boichuk, Yu.M., Pirko, Ya.V., Korkhovoy, V.I., Rakhmetov, D.B., Yemets, A.I., and Blume, Ya.B., Analysis of breeding false flax (Camelina sativa (L.) Crantz) material with ISSR markers, Factors Exp. Evol. Organisms, 2014, vol. 14, pp. 146150.

47. Sambrook, J., David, W.R.,Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, 2001, vol. 2.

48. Shen, S. Genetic diversity analysis with ISSR PCR on green algae Chlorella vulgaris and Chlorella pyrenoidosa,Chin. J. Ocean. Limn., 2008, vol. 26, no. 4, pp. 380384. https://doi.org/10.1007/s00343-008-0380-1

49. Benbouza, H., Jacquemin, J.-M., Baudoin, J.-P., and Mergeai, G., Otimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels, Biotechnol. Agron. Soc. Environ., 2006, vol. 10, pp. 7781. https://popups.uliege.be: 443/1780-4507/index. php?id=1128

50. Bardini, M., Lee, D., Donini, P., Mariani, A., Giani, S., Toschi, M., Lowe, C., and Breviario, D., Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species, Genome, 2004, vol. 47, pp. 2812891. https://doi.org/10.1139/g03-132

51. Breviario, D., Baird, W.V., Sangoi, S., Hilu, K., Blumetti, P., and Giani, S., High polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns, Mol. Breed., 2007, vol. 20, pp. 249259. https://doi.org/10.1007/s11032-007-9087-9

52. Braglia, L.B., Manca, A.M., Mastromauro, F.M., and Breviario, D. cTBP: A successful intron length polymorphism (ILP)based genotyping method targeted to well defined experimental needs, Diversity, 2010, vol. 2, pp. 572585. https://doi.org/10.3390/d2040572

53. Postovoitova, A.S., Yotka, O.Yu., Pirko, Ya.V., and Blume, Ya.B., Molecular genetic evaluation of Ukrainian flax cultivars homogeneity based on intron length polymorphism of actin genes and microsatellite loci, Cytol. Genet., 2018, vol. 52, no. 6, pp. 448460. https://doi.org/10.3103/S0095452718060099

54. Postovoitova, A.S., Pirko, Ya.V., and Blume, Ya.B., Polymorphism of actin gene introns as an instrument for genotyping of the representatives from Solanaceae family, Biol. Systems: Theor. Innov., 2018, no. 287, pp. 7179. https://doi.org/10.31548/biologiya2018.287.071

55. Postovoitova, A.S., Pirko, Ya.V., and Blume, Ya.B., Intron length polymorphism of actin genes as the efficient tool for an genetic profiling of selected cereals from the grass (Poaceae L.) Family, Dopov. Nats. Akad. Nauk. Ukr., 2019, vol. 2, pp. 7883. https://doi.org/10.15407/dopovidi-2019.02.078

56. Pleines, S. and Friedt, W., Breeding for improved C18-fatty acid composition in rapeseed (Brassica napus L.), Fett./Lipid, 1988, vol. 90, pp. 167171. https://doi.org/10.1002/lipi.19880900502

57. Velasco, L., Goffman, F.D., and Becker, H.C., Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica,Genet. Resour. Crop Evol., 1998, vol. 45, pp. 371382. https://doi.org/10.1023/A:1008628624867

58. Pavlicek, A., Hrda, S., and Flegr, J., FreeTreefreeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia, Folia Biol., 1999, vol. 45, pp. 9799.

59. Nei, M. and Li, W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, pp. 52695273. https://doi.org/10.1073/pnas.76.10.5269

60. Hongtrakul, V., Huestis, G.M., and Knapp, S.J., Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbred lines, Theor. Appl. Genet., 1997, vol. 95, pp. 400407.https://doi.org/10.1007/s001220050576

61. Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J.R., Maciejewski, A., and Wishart, D.S., Heatmapper: web-enabled heat mapping for all, Nucleic Acids Res., 2016, vol. 44 (W1), pp. W147 W153. https://doi.org/10.1093/nar/gkw419

62. An, D. and Suh, M.C., Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa,Plant Biotechnol. Rep., 2015, vol. 9, pp. 137148. https://doi.org/10.1007/s11816-015-0351-x

63. Khlestkina, E.K., Molecular markers in genetic studies and breeding, Russ. J. Genet. Appl. Res., 2014, vol. 4, no. 3, pp. 236244. https://doi.org/10.1134/S2079059714030022

64. van Tienderen, P.H., de Haan, A.A., van der Linden, C.G., and Vosman, B., Biodiversity assessment using markers for ecologically important traits, Trends Ecol. Evol., 2002, vol. 17, no. 12, pp. 577582. https://doi.org/10.1016/S0169-5347(02)02624-1

65. Grant, I. and Beversdorf, W.D., Heterosis and combining ability estimates in spring-planted oilseed rape (Brassica napus L.), Can. J. Genet. Cytol., 1985, vol. 27, no. 4, pp. 472478. https://doi.org/10.1139/g85-069

66. Wolko, J., Dobrzycka, A., Bocianowski, J., and Bartkowiak-Broda, I., Estimation of heterosis for yield-related traits for single cross and three-way cross hybrids of oilseed rape (Brassica napus L.), Euphytica, 2019, vol. 215, p. 156. https://doi.org/10.1007/s10681-019-2482-6

67. Gupta, P., Chaudhary, H.B., and Lal, S.K., Heterosis and combining ability analysis for yield and its components in Indian mustard (Brassica juncea L. Czern & Coss), Front. Agricult. China, 2010, vol. 4, pp. 299307. https://doi.org/10.1007/s11703-010-1016-8

68. Kibar, B., Karaagaz, O., and Kar, H., Heterosis for yield contributing head traits in cabbage (Brassica oleracea var. capitata), Cien. Inv. Agr., 2015, vol. 42, no. 2, pp. 205216. https://doi.org/10.4067/S0718-16202015000200007

69. Xie, F., Zha, J., Tang, H., Xu, Y., Liu, X., and Wan, Z., Combining ability and heterosis analysis for mineral elements by using cytoplasmic male-sterile systems in non-heading Chinese cabbage (Brassica rapa), Crop Pasture Sci., 2018, vol. 69, no. 3, pp. 296 302.

70. Zelt, N.H. and Schoen, D.J., Testing for heterosis in traits associated with seed yield in Camelina sativa,Can. J. Plant Sci., 2016, vol. 96, no. 4, pp. 525529. https://doi.org/10.1139/CJPS-2015-0254

71. Jain, A., Bhatia, S., Banga, S.S., Prakash, S., and Lakshmikumaran, M., Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship to heterosis, Theor. Appl. Genet., 1994, vol. 88, pp. 116122. https://doi.org/10.1007/BF00222403

72. Kawamura, K., Kawanabe, T., Shimizu, M., Nagano, A.J., Saeki, N., Okazaki, K., Kaji, M., Dennis, E.S., Osabe, K., and Fujimoto, R., Genetic distance of inbred lines of Chinese cabbage and its relationship to heterosis, Plant Gene, 2016, vol. 5, pp. 17. https://doi.org/10.1016/j.plgene.2015.10.003

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 29.11.21