ISSN 0564-3783  

Main page
Information to authors
Editorial board
Mobile version

In Ukrainian

Export citations

Evaluating diversity and breeding perspectives of ukrainian spring camelina genotypes

Blume R.Y., Rabokon A.N., Postovitova A.S., Demkovich A.Y., Pirko Y.V., Yemets A.I., Rakhmetov D.B., Blume Y.B.


SUMMARY. Camelina or false flax (Camelina sativa) is considered as one of the most perspective oilseed crops for oil-based biofuel production. It is known that the center of origin of false flax is located in Eastern Europe, were this species arised via polyploidisation or crossing between wild relatives from Camelina genus. As a result of such evolutionary event camelina possesses by low level of genetic diversity, what sets restrictions on breeding improvement of this crop. Despite number of investigations, focused on evaluation of camelina varieties genetic polymorphism, the diversity of Ukrainian cultivars has not been assessed yet, although this region is a part of camelina center of origin. Here we firstly report about complex evaluation of genetic similarity of Ukrainian camelina breeding lines and cultivars, as well as analysis of morphometric and yield parameters as well as fatty acid composition of their seed oil. According to the results of chromatographic analysis, two camelina genotypes represented particular interest (FEORZhYaF-2 and FEORZhYaFD) due to high content of fatty acids with short carbon chain (less than C18) in seed lipids. Additionally, genetic distances between investigated accessions were identified using ISSR, SSR and ILP (actin and β-tubulin) markers. Obtained data were compared with crop productivity and morphometric parameters to determine the most desirable genotype pairs for further cross breeding. Thus, different crossing combinations of breeding lines FEORZhYaF-2 and FEORZhYaFD with varieties Mirazh and Peremoha might theoretically result in heterosis exhibition in first generation. Described approach for assessment of camelina germplasm collections during breeding process could be considered as powerful tool for significant increasing of this oilseed improvement efficiency of improvement.

Key words: Brassicaceae, oilseeds, breeding, camelina, Camelina sativa, fatty acids, bio-jet fuel, heterosis, molecular markers, marker-assisted breeding

Tsitologiya i Genetika 2020, vol. 54, no. 5, pp. 54-74

  1. Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, Ukraine, 04123, Kyiv, Osypovskoho Str., 2a
  2. Educational and Scientific Center Institute of biology and medicine of Taras Shevchenko National University of Kyiv, Ukraine, 03022, Kyiv, Akademika Hlushkova Ave., 2
  3. MM Gryshko National Botanical Garden of National Academy of Sciences of Ukraine, Ukraine, 01014, Kyiv, Tymiriazevska Str., 1

E-mail: cellbio; blume.rostislav

Blume R.Y., Rabokon A.N., Postovitova A.S., Demkovich A.Y., Pirko Y.V., Yemets A.I., Rakhmetov D.B., Blume Y.B. Evaluating diversity and breeding perspectives of ukrainian spring camelina genotypes, Tsitol Genet., 2020, vol. 54, no. 5, pp. 54-74.

In "Cytology and Genetics":
R. Y. Blume, A. M. Rabokon, A. S. Postovoitova, A. Ye. Demkovich, Ya. V. Pirko, A. I. Yemets, D. B. Rakhmetov & Ya. B. Blume Evaluating the Diversity and Breeding Prospects of Ukrainian Spring Camelina Genotypes, Cytol Genet., 2020, vol. 54, no. 5, pp. 420436
DOI: 10.3103/S0095452720050084


1. Downey, R.K., The origin and description of the Brassica oilseed crops, in High and Low Erucic Acid Rapeseed Oils: Production, Usage, Chemistry, and Toxicological Evaluation, Kramer, J.K.G., Sauer, F.D., and Pigden, W.J., Eds., Toronto: Academic, 1983, pp. 120.

2. Carlson, A.S., Plant oils as feedstock alternatives to petroleuma short survey of potential oil crop platforms, Biochimie, 2009, vol. 91, pp. 665670.

3. Warwick, S.I., Brassicaceae in agriculture, in Genetics and Genomics of the Brassicaceae, Schmidt, R., and Bancroft, I., Eds., New York: Springer Science+Business Media, 2011, pp. 3365.

4. Warwick, S.I., Gugel, R., McDonald, T., and Falk, K.C., Genetic variation and agronomic potential of Ethiopian mustard (Brassica carinata) in western Canada, Genet. Resour. Crop. Evol., 2006, vol. 53, pp. 297312.

5. Marillia, E.F., Francis, T., Falk, K.C., Smith, M., and Taylor, D.C., Pallisers promise: Brassica carinata, an emerging western Canadian crop for delivery of new bio-industrial oil feedstocks, Biocatalysis Agricult. Biotechnol., 2014, vol. 3, no. 1, pp. 6574.

6. Gesch, R.W., Isbell, T.A., Oblath, E.A., Allen, B.L., Archer, D.W., Brown, J., Hatfield, J.L., Jabro, J.D., Kiniry, J.R., Long, D.S., and Vigil, M.F., Comparison of several Brassica species in the north central U.S. for potential jet fuel feedstock, Industr.Crop Prod., 2015, vol. 75, pp. 27.

7. Moser, B.R., Camelina (Camelina sativa L.) oil as a biofuels feedstock: golden opportunity or false hope?, Lipid Technol., 2010, vol. 22, no. 12, pp. 270 273.

8. Berti, M., Gesch, R., Eynck, C., Anderson, J., and Cermak, S., Camelina uses, genetics, genomics, production, and management, Industr. Crop Prod., 2016, vol. 94, pp. 690710.

9. Moser, B.R., Knothe, G., Vaughn, S.F., and Isbell, T.A., Production and evaluation of biodiesel from field pennycress (Thlaspi arvense L.) oil, Energy Fuels, 2009, vol. 23, pp. 41494155.

10. McGinn, M., Phippen, W.B., Chopra, R., Bansal, S., Jarvis, B.A., Phippen, M.E., Dorn, K.M., Esfahanian, M., Nazarenus, T.J., Cahoon, E.B., Durrett, T.P., Marks, M.D., and Sedbrook, J.C., Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop, Plant Biotechnol. J., 2019, vol. 17, no. 4, pp. 776788.

11. Vollmann, J. and Eynck, C., Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering, Biotechnol. J., 2015, vol. 10, pp. 525535.

12. Zubr, J., Oil-seed crop: Camelina sativa, Industr.Crop Prod., 1997, vol. 6, pp. 113119.

13. Frohlich, A., Rice, B., Evaluation of Camelina sativa oil as a feedstock for biodiesel production, Industr.Crop Prod., 2005, vol. 21, pp. 2531.

14. Gugel, R.K., Falk, K.C., Agronomic and seed quality evaluation of Camelina sativa in western Canada, Can. J. Plant Sci., 2006, vol. 86, pp. 10471058.

15. The Biology of Camelina sativa (L.) Crantz (Camelina). A Companion Document to Directive 94-08 (Dir94-08), Assessment Criteria for Determining Environmental Safety of Plant with Novel Traits, CFIA, Plant Bio-Safety Office, Ottawa, ON, Canada, 2012. camelsate.shtml. Accessed April 4, 2013.

16. Obour, K.A., Sintim, Y.H., Obeng, E., and Jeliazkov, D.V., Oilseed camelina (Camelina sativa L. Crantz): production systems, prospects and challenges in the USA Great Plains, Adv. Plants Agric. Res., 2015, vol. 2, no. 2, 00043. 2015.02.00043

17. Wittkop, B., Snowdon, R.J., and Friedt, W., Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe, Euphytica, 2009, vol. 170, pp. 131140.

18. Singh, S.P. and Singh, D., Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review, Renew. Sust. Energy Rev., 2010, vol. 14, pp. 200216.

19. Atabani, A.E., Silitonga, A.S., Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., Badruddin, I.A., and Fayaz, H., Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production, Renew. Sustain. Ener. Rev., 2013, vol. 18, pp. 211245.

20. Ratanapariyanuch, K., Clancy, J., Emami, S., Cutler, J., and Reaney, M.J.T., Physical, chemical, and lubricant properties of Brassicaceae oil, Eur. J. Lipid Sci. Technol., 2013, vol. 115, pp. 10051012.

21. Iskandarov, U., Kim, H.J., and Cahoon, E.B., Camelina: an emerging oilseed platform for advanced biofuels and bio-based materials, in Plants and BioEnergy, McCann, M.C., Buckeridge, M.S., and Cerpita N.C., Eds., New York: Springer, 2014, pp. 131140.

22. Li, X., and Mupondwa, E., Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies, Sci. Total Environ., 2014, vol. 481, pp. 1726.

23. Natelson, R.H., Wang, W.C., Roberts, W.L., and Ze-ring, K.D., Technoeconomic analysis of jet fuel production from hydrolysis, decarboxylation, and reforming of camelina oil, Biomass Bioenergy, 2015, vol. 75, pp. 2334.

24. IATA 2015 Report on Alternative Fuels, 10th ed., 2016, MontrealGeneva: International Air Transport Association, ISBN 978-92-9252-870-6.

25. Faure, J.D., Tepfer, M., Camelina, a Swiss knife for plant lipid biotechnology, OCL, 2016, vol. 23, no. 5, D503.

26. Weeks, D.P., Gene editing in polyploid crops: wheat, camelina, canola, potato, cotton, peanut, sugar cane, and citrus, Prog. Mol. Biol. Transl. Sci., 2017, vol. 149, pp. 6580. 05.002

27. Yemets, A.I., Boychuk, Yu.N., Shysha, E.N., Rakhmetov, D.B., and Blume, Ya.B., Establishment of in vitro culture, plant regeneration, and genetic transformation of Camelina sativa,Cytol. Genet., 2013, vol. 47, no. 3, pp. 138144.

28. Gehringer, A., Friedt, W., Lühs, W., and Snowdon, R.J., Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa), Genome, 2006, vol. 49, pp. 15551563.

29. Vollmann, J., Grausgruber, H., Stift, G., Dryzhyruk, V., and Lelley, T., Genetic diversity in Camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism, Plant Breed., 2005, vol. 124, pp. 446453.

30. Ghamkhar, K., Croser, J., Aryamanesh, N., Campbell, M., Konkova, N., and Francis, C., Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses, Genome, 2010, vol. 53, no. 7, pp. 558567.

31. Manca, A., Galasso, I., Development of simple sequence repeat (SSR) markers in Camelina sativa (L.) Crantz, Minerva Biotec., 2010, vol. 22, pp. 4345.

32. Galasso, I., Manca, A., Braglia, L., Martinelli, T., Morello, L., and Breviario, D., hTBP: an approach based on intronlength polymorphism for the rapid isolation and characterization of the multiple members of the btubulin gene family in Camelina sativa (L.) Crantz, Mol. Breed., 2011, vol. 28, pp. 635645.

33. Manca, A., Pecchia, P., Mapelli, S., Masella, P., and Galasso, I, Evaluation of genetic diversity in a Camelina sativa (L.) Crantz collection using microsatellite markers and biochemical traits, Genet. Resour. Crop Evol., 2012, vol. 60, pp. 1223 1226.

34. Singh, R., Bollina, V., Higgins, E.E., Clarke, W.E., Eynck, C., Sidebottom, C. Gugel R., Snowdon, R., and Parkin, I.A.P., Single-nucleotide polymorphism identification and genotyping in Camelina sativa,Mol. Breed., 2015, vol. 35, no. 1, pp. 113.

35. Luo, Z., Brock, J., Dyer, J.M., Kutchan, T., Schachtman, D., Augustin, M., Ge, Y., Fahlgren, N., and Abdel-Haleem, H., Genetic diversity and population structure of a Camelina sativa spring panel, Front. Plant Sci., 2019, vol. 10, p. 184.

36. Hutcheon, C., Ditt, R.F., Beilstein, M., Comai, L., Schroeder, J., Goldstein, E., Shewmaker, C.K., Nguyen, T., De Rocher, J., and Kiser, J. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes, BMC Plant Biol., 2010, vol. 10, p. 233.

37. Kagale, S., Koh, C., Nixon, J., Bollina, V., Clarke, W.E., Tuteja, R., Spillane, C., Robinson, S.J., Links, M.G., Clarke, C., Higgins, E.E., Huebert, T., Sharpe, A.G., and Parkin, I.A., The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure, Nat. Commun., 2014, vol. 5, p. 3706.

38. Mándaková, T., Pouch, M., Brock, J.R., Al-Shehbaz, I.A., and Lysak, M.A., Origin and evolution of diploid and allopolyploid Camelina genomes were accompanied by chromosome shattering, Plant Cell, 2019, vol. 31, no. 11, pp. 25962612.

39. Chaudhary, R., Koh, C.S., Kagale, S., Tang, L., Wu, S.W., Lv, Z., Mason, A.S., Sharpe, A.G., Die-derichsen, A., and Parkin, I.A.P., Assessing diversity in the Camelina genus provides insights into the genome structure of Camelina sativa, G3: Genes, Genomes,Genet., 2020, vol. 10, no. 4, pp. 12971308.

40. Kurasiak-Popowska, D., Tomkowiak, A., Czlopinska, M., Bocianowski, J., Weigt, D., and Nawracala, J., Analysis of yield and genetic similarity of Polish and Ukrainian Camelina sativa genotypes, Industr.Crop Prod., 2018, vol. 123, pp. 667675.

41. Rakhmetov, D.B., Blume, Ya.B., Yemets, A.I., Boi-chuk, Yu.M., Andrushchenko, O.L., Vergun, O.M., and Rakhmetova, S.O., Camelina sativa (L.) Crantzvaluable oil plant, Plant Introduction, 2014, vol. 2, no. 62, pp. 5058.

42. Rakhmetov, D.B., Rahmetova, S.O., Boychuk, Yu.N., Blume, Ya.B., and Yemets, A.I., Physiological and morphological characteristics of new forms and varieties of spring false flax (Camelina sativa), Bull. Ukr. Soc. Genet. Breed., 2014, vol. 12, no. 1, pp. 6577.

43. Blume, R.Ya., Boychuk, Yu.M., Yemets, A.I., Rakhmetova, S.O., Blume, Ya.B., and Rakhmetov, D.B., Comparative analysis of fatty acid composition for oils from seeds of tyfon, oil radish and camelina breeding forms and varieties as perspective source for biodiesel production, Factors Exp. Evol. Organisms, 2018, vol. 18, pp. 6166.

44. Blume, R., Rakhmetov, D., Comparative analysis of oil fatty acid composition of Ukrainian spring Camelina sativa breeding forms and varieties as a perspective biodiesel source, Cruciferae Newslett., 2017, vol. 36, pp. 137.

45. Blume, R.Y., Lantukh, G.V., Levchuk, I.V., Rakhmetov, D.B., and Blume, Ya.B., Evaluation of potential biodiesel feedstocks from industrial Cruciferae: camelina, turnip rape, oil radish and tyfon, Open Agr. J., 2020, vol. 14 (in press).

46. Bayer, G.Ya., Boichuk, Yu.M., Pirko, Ya.V., Korkhovoy, V.I., Rakhmetov, D.B., Yemets, A.I., and Blume, Ya.B., Analysis of breeding false flax (Camelina sativa (L.) Crantz) material with ISSR markers, Factors Exp. Evol. Organisms, 2014, vol. 14, pp. 146150.

47. Sambrook, J., David, W.R.,Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, 2001, vol. 2.

48. Shen, S. Genetic diversity analysis with ISSR PCR on green algae Chlorella vulgaris and Chlorella pyrenoidosa,Chin. J. Ocean. Limn., 2008, vol. 26, no. 4, pp. 380384.

49. Benbouza, H., Jacquemin, J.-M., Baudoin, J.-P., and Mergeai, G., Otimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels, Biotechnol. Agron. Soc. Environ., 2006, vol. 10, pp. 7781. 443/1780-4507/index. php?id=1128

50. Bardini, M., Lee, D., Donini, P., Mariani, A., Giani, S., Toschi, M., Lowe, C., and Breviario, D., Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species, Genome, 2004, vol. 47, pp. 2812891.

51. Breviario, D., Baird, W.V., Sangoi, S., Hilu, K., Blumetti, P., and Giani, S., High polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns, Mol. Breed., 2007, vol. 20, pp. 249259.

52. Braglia, L.B., Manca, A.M., Mastromauro, F.M., and Breviario, D. cTBP: A successful intron length polymorphism (ILP)based genotyping method targeted to well defined experimental needs, Diversity, 2010, vol. 2, pp. 572585.

53. Postovoitova, A.S., Yotka, O.Yu., Pirko, Ya.V., and Blume, Ya.B., Molecular genetic evaluation of Ukrainian flax cultivars homogeneity based on intron length polymorphism of actin genes and microsatellite loci, Cytol. Genet., 2018, vol. 52, no. 6, pp. 448460.

54. Postovoitova, A.S., Pirko, Ya.V., and Blume, Ya.B., Polymorphism of actin gene introns as an instrument for genotyping of the representatives from Solanaceae family, Biol. Systems: Theor. Innov., 2018, no. 287, pp. 7179.

55. Postovoitova, A.S., Pirko, Ya.V., and Blume, Ya.B., Intron length polymorphism of actin genes as the efficient tool for an genetic profiling of selected cereals from the grass (Poaceae L.) Family, Dopov. Nats. Akad. Nauk. Ukr., 2019, vol. 2, pp. 7883.

56. Pleines, S. and Friedt, W., Breeding for improved C18-fatty acid composition in rapeseed (Brassica napus L.), Fett./Lipid, 1988, vol. 90, pp. 167171.

57. Velasco, L., Goffman, F.D., and Becker, H.C., Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica,Genet. Resour. Crop Evol., 1998, vol. 45, pp. 371382.

58. Pavlicek, A., Hrda, S., and Flegr, J., FreeTreefreeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia, Folia Biol., 1999, vol. 45, pp. 9799.

59. Nei, M. and Li, W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, pp. 52695273.

60. Hongtrakul, V., Huestis, G.M., and Knapp, S.J., Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbred lines, Theor. Appl. Genet., 1997, vol. 95, pp. 400407.

61. Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J.R., Maciejewski, A., and Wishart, D.S., Heatmapper: web-enabled heat mapping for all, Nucleic Acids Res., 2016, vol. 44 (W1), pp. W147 W153.

62. An, D. and Suh, M.C., Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa,Plant Biotechnol. Rep., 2015, vol. 9, pp. 137148.

63. Khlestkina, E.K., Molecular markers in genetic studies and breeding, Russ. J. Genet. Appl. Res., 2014, vol. 4, no. 3, pp. 236244.

64. van Tienderen, P.H., de Haan, A.A., van der Linden, C.G., and Vosman, B., Biodiversity assessment using markers for ecologically important traits, Trends Ecol. Evol., 2002, vol. 17, no. 12, pp. 577582.

65. Grant, I. and Beversdorf, W.D., Heterosis and combining ability estimates in spring-planted oilseed rape (Brassica napus L.), Can. J. Genet. Cytol., 1985, vol. 27, no. 4, pp. 472478.

66. Wolko, J., Dobrzycka, A., Bocianowski, J., and Bartkowiak-Broda, I., Estimation of heterosis for yield-related traits for single cross and three-way cross hybrids of oilseed rape (Brassica napus L.), Euphytica, 2019, vol. 215, p. 156.

67. Gupta, P., Chaudhary, H.B., and Lal, S.K., Heterosis and combining ability analysis for yield and its components in Indian mustard (Brassica juncea L. Czern & Coss), Front. Agricult. China, 2010, vol. 4, pp. 299307.

68. Kibar, B., Karaagaz, O., and Kar, H., Heterosis for yield contributing head traits in cabbage (Brassica oleracea var. capitata), Cien. Inv. Agr., 2015, vol. 42, no. 2, pp. 205216.

69. Xie, F., Zha, J., Tang, H., Xu, Y., Liu, X., and Wan, Z., Combining ability and heterosis analysis for mineral elements by using cytoplasmic male-sterile systems in non-heading Chinese cabbage (Brassica rapa), Crop Pasture Sci., 2018, vol. 69, no. 3, pp. 296 302.

70. Zelt, N.H. and Schoen, D.J., Testing for heterosis in traits associated with seed yield in Camelina sativa,Can. J. Plant Sci., 2016, vol. 96, no. 4, pp. 525529.

71. Jain, A., Bhatia, S., Banga, S.S., Prakash, S., and Lakshmikumaran, M., Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship to heterosis, Theor. Appl. Genet., 1994, vol. 88, pp. 116122.

72. Kawamura, K., Kawanabe, T., Shimizu, M., Nagano, A.J., Saeki, N., Okazaki, K., Kaji, M., Dennis, E.S., Osabe, K., and Fujimoto, R., Genetic distance of inbred lines of Chinese cabbage and its relationship to heterosis, Plant Gene, 2016, vol. 5, pp. 17.

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 30.07.21