Psammochloa villosa is a sandy perennial grass (Poaceae) endemic to the northwest China, which has extremely important ecological and genetic values. To explore characterization and phylogenetic analysis of the complete chloroplast (cp) genome of Psammochloa villosa, we firstly sequenced and compared it with other cp genomes within Poaceae in this study. The result showed that the cp genome of P. villosa was 135,541 bp in size with a high A + T content of 61.2 %, and had a typical quadripartite structure with the large (LSC, 80,272 bp) and small (SSC, 12,453 bp) single copy regions separated by two copies of inverted repeats (IRs, 21,408 bp each). We successfully annotated 134 genes, including 79 protein-coding genes, 42 tRNAs genes and ten rRNAs genes. Among these genes, 42 genes locate in IR regions. Additionally, we constructed a phylogenetic tree based on 40 cp genome sequences, which indicated that P. villosa has a closer relationship with the other species in subfamily Pooideae.
Keywords: Complete chloroplast genome; Psammochloa villosa; Poaceae; Phylogenetic analysis; Northwest China
Full text and supplemented materials
References
1. Gray, J.C., Genetic manipulation of the chloroplast genome, Biotechnology, 1989, vol. 12, no. 14, pp. 317–335.
2. Howe, C.J., Barbrook, A.C., Koumandou, V.L., Nisbet, R.E., and Symington, H.A., Evolution of the chloroplast genome, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2003, vol. 358, no. 1429, pp. 99–107.
3. Jansen, R.K., Cai, Z.Q., Raubeson, L.A., Daniell, H., Depamphilis, C.W., Leebens-Mack, J., Müller, K.F., Guisinger-Bellian, M., Haberle, R.C., Hansen, A.K., Chumley, T.W., Lee, S.B., Peery, R., McNeal, J.R., Kuehl, J.V., and Boore, J.L., Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 49, pp. 19369–19374.
4. Odintsova, M.S. and Yurina, N.P., Chloroplast genomics of land plants and algae, in Biotechnological Applications of Photosynthetic Protein: Biochips, Biosensors and Biodevices, US: Springer, 2006, pp. 57–72.
5. Yin, Z.B., Genus Psammochloa, in Flora of Inner Mongolia, Ma, Y.Q., Ed., Hohhot: Inner Mongolia People Press, 1994, vol. 15, pp. 115–152.
6. Liu, Y.X., Flora in Desertis Reipublicae Populorum Sinarum, Beijing: Sci. Press, 1985, vol. 1, p. 357.
7. Wu, Z.Y., Wang, S., and Tong, F.Q., The extinct danger of the Procapra przewalskii, Endanger. Spec. Sci. Newslett., 2003, vol. 2, p. 10.
8. Dong, M., A La, T.B., Xing, X.R., and Wang, Q.B., Genet features and ramet population features in the rhizomatous grass species Psammochloa villosa, Chin. J. Plant Ecol., 1999, vol. 23, no. 4, pp. 302–310.
9. Dong, M., Effects of severing rhizome on clonal growth in rhizomatous grass species Psammochloa villosa and Leymus secalinus, Acta Bot. Sin., 1999, vol. 41, no. 2, pp. 194–198.
10. Huang, Z.Y., Adaptation strategies of seed dormancy and germination of Psammochloa villosa, a sand dune grass inhabiting Ordos Plateau, China, Acta Bot. Boreal–Occident Sin., 2003, vol. 23, no. 7, pp. 1128–1133.
11. Wang, K.Q., Ge, S., and Dong, M., Allozyme variance and clonal diversity in the rhizomatous grass Psammochloa villosa (Gramineae), Acta Bot. Sin., 1999, vol. 41, no. 5, pp. 537–540.
12. Li, A. and Ge, S., Genetic variation and clonal diversity of Psammochloa villosa (Poaceae) detected by ISSR markers, Ann. Bot., 2001, vol. 87, no. 5, pp. 585–590.
13. Xu, Z.X., He, X.L., Guo, H.J., and Zhao, L.L., AM fungi colonization and soil factors of Psammochloa villosa (Trin.) Bor and Hedysalum laeve Min. in farming-pastoral area of Inner Mongolia, J. Hebei Agric. Univ., 2011, vol. 34, no. 1, pp. 56–61.
14. Doyle, J.J. and Doyle, J.L., Isolation of plant DNA from fresh tissue, Focus, 1990, vol. 12, no. 1, pp. 13–15.
15. Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30, no. 15, pp. 2114–2120.
16. Zerbino, D.R. and Birney, E., Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Res., 2008, vol. 18, no. 5, pp. 821–829.
17. Lohse, M., Drechsel, O., Kahlau, S., and Bock, R., Organellar Genome DRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets, Nucleic Acids Res., 2013, vol. 41, pp. W575–W581.
18. Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, no. 4, pp. 772–780.
19. Swofford, D.L., PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), ver. 4, Sunderland, MA: Sinauer Associates, 2002.
20. Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 2014, vol. 30, no. 9, pp. 1312–1313.