ISSN 0564-3783  

Main page
Information to authors
Editorial board
Mobile version

In Ukrainian

Export citations

Tlr2, Tjp1 genes expression during restoration of skin integrity

Huet ., Dvorshchenko ., Taburets O., Grebinyk D., Beregova T., Ostapchenko L.


SUMMARY. The decrease of Tjp1 gene expression against the background of activation of free radical processes (increase in the content of superoxide anion-radical) was observed during healing of full-thickness skin wounds in rats. The restoration of the expression level of this gene may be mediated by an increase in the expression level of Tlr2 gene. The level of Tjp1 gene expression as well as the content of the superoxide anion radical, was closer to the control values at the specified wound pattern in the absence of Tlr2 gene overexpression upon the treatment with melanin during restoration of skin integrity.

Key words: Tjp1, Tlr2 gene expression, full-thickness skin wound, melanin

Tsitologiya i Genetika 2020, vol. 54, no. 6, pp. 45-53

  • Educational and Scientific Center Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., Kyiv 01601

E-mail: alevtina.dranitsina

Huet ., Dvorshchenko ., Taburets O., Grebinyk D., Beregova T., Ostapchenko L. Tlr2, Tjp1 genes expression during restoration of skin integrity, Tsitol Genet., 2020, vol. 54, no. 6, pp. 45-53.

In "Cytology and Genetics":
A. Huet, K. Dvorshchenko, O. Taburets, D. Grebinyk, T. Beregova & L. Ostapchenko Tlr2 and Tjp1 Genes Expression during Restoration of Skin Integrity, Cytol Genet., 2020, vol. 54, no. 6, pp. 539545
DOI: 10.3103/S0095452720060122


1. Penn, J.W., Grobbelaar, A.O., and Rolfe, K.J., The role of the TGF-? family in wound healing, burns and scarring: a review, Int. J. Burn. Trauma, 2012, vol. 2, no. 1, pp. 1828.

2. Kuo, I.-H., Carpenter-Mendini, A., Yoshida, T., McGirt, L.Y., Ivanov, A.I., Barnes, K.C., Gallo, R.L., Borkowski, A.W., Yamasaki, K., Leung, D.Y., Georas, S.N., De Benedetto, A., and Beck, L.A., Activation of epidermal toll-like receptor 2 enhances tight junction functionimplications for atopic dermatitis and skin barrier repair, J. Invest. Dermatol., 2013, vol. 133, no. 4, pp. 988998.

3. Korotkyi, O., Dvorshchenko, K., Vovk, A., Dranitsina, A., Tymoshenko, M., Kot, L., and Ostapchenko, L., Effect of probiotic composition on oxidative/antioxidant balance in blood of rats under experimental osteoarthritis, Ukr. Biochem. J., 2019, vol. 91, no. 6, pp. 4958.

4. Wagener, F.A., Carels, C.E., and Lundvig, D.M., Targeting the redox balance in inflammatory skin conditions, Int. J. Mol. Sci., 2013, vol. 14, no. 9, pp. 126167.

5. Dranitsina, A.S., Taburets, O.V., Dvorshchenko, K.O., Grebinyk, D.M., Beregova, T.V., and Ostapchenko, L.I., TGFB 1, PTGS 2 genes expression during dynamics of wound healing and with the treatment of melanin, Res. J. Pharm., Biol. Chem. Sci., 2017, vol. 8, no. 1, pp. 20142023.

6. Addor, F.A.S., Antioxidants in dermatology, An. Bras. Dermatol. 2017, vol. 92, no. 3, pp. 356362.

7. Cario, E., Gerken, G., and Podolsky, D.K., Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C, Gastroenterology. 2004, vol. 127, pp. 224238.

8. Yuki, T, Yoshida, H., Akazawa, Y., Komiya, A., Sugiyama, Y., and Inoue, S., Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes, J. Immunol., 2011b, vol. 187, pp. 32303237.

9. Rajaiah, R., Perkins, D.J., Ireland, D.D.C., and Vogel, S.N., CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. 83918396.

10. Sun, L., Liu, W., and Zhang, L.-J., The role of Toll-like receptors in skin host defense, psoriasis, and atopic dermatitis, J. Immunol. Res., 2019.

11. Bo Zhang, Yeong Min Choi, Junwoo Lee, In Sook An, Li Li, Congfen He, Yinmao Dong, Seung-hee Bae, and Hong Meng, Toll-like receptor 2 plays a critical role in pathogenesis of acne vulgaris, Med. Dermatol., 2019, vol. 4, pp. 16.

12. Niebuhr, M., Lutat, C., Sigel, S., and Werfel, T., Impaired TLR-2 expression and TLR-2-mediated cytokine secretion in macrophages from patients with atopic dermatitis, Allergy, 2009, vol. 64, pp. 15801587.

13. Brandner, J.M., Kief, S., Grund, C., Rendl, M., Houdek, P., Kuhn, C., Tschachler, E., Franke, W.W., and Moll, I., Organization and formation of the tight junction system in human epidermis and cultured keratinocytes, Eur. J. Cell Biol., 2002, vol. 81, pp. 253263.

14. Qiao X, Roth I, F?raille E, Hasler U. Different effects of ZO-1, ZO-2 and ZO-3 silencing on kidney collecting duct principal cell proliferation and adhesion, Cell Cycle, 2014, vol. 13, no. 19, pp. 30593075.

15. Steed, E., Balda, M.S., and Matter, K., Dynamics and functions of tight junctions, Trends Cell Biol., 2010, vol. 20, pp. 142149.

16. Bauer, H., Zweimueller-Mayer, J., Steinbacher, P., Lametschwandtner, A., and Bauer, H.C., The dual role of zonula occludens (ZO) proteins, J. Biomed. Biotechnol., 2010, vol. 2010, p. 402593.

17. Stacey, A. N. DMello, Graeme, J. Finlay, Bruce C., Baguley, Marjan, E., Askarian-Amiri., Signal. Path. Melanog., 2016, vol. 17, no. 7, p. 1144.

18. El-Obeid, A., Al-Harbi, S., Al-Jomah, N., Hassib, A., Herbal melanin modulates tumor necrosis factor (TNF-alfa), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF) production, Phytomedicine, 2006, vol. 13, pp. 32433.

19. Golyshkin, D.V., Falaleeva, T.M., Neporada, K.S., and Beregova, T.V., Effect of melanin on the condition of gastric mucosa and reaction of the hypothalamic-pituitary-adrenal axis under acute stress, Physiol. J., 2015, vol. 61, no. 2, pp. 6572.

20. Henry, S.L., Concannon, M.J., and Yee, G.J., The effect of magnetic fields on wound healing. Experimental study and review of the literature, Open Acc. J. Plast. Surg., 2008, vol. 8, pp. 393399.

21. Bilyayeva, O., Neshta, V.V., Golub, A., and Sams-Dodd, F., Effects of sea silon wound healing in the rat, J. Wound Care, 2014, vol. 23, no. 8, pp. 140146.

22. Schafer, M. and Werner, S., Oxidative stress in normal and impaired wound repair, Pharmacol. Res., 2008, vol. 58, pp. 165171.

23. Sutherland, M.W. and Learmonth, B.A., The tetrazolium dyes MTS and XTT provide new quantitative assays for superoxide and superoxide dismutase, Free Radic. Res., 1997, vol. 27, no. 3, pp. 283289.

24. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265275. PubMed PMID: 14907713

25. Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal. Biochem., 1987, vol. 162, no. 1, pp. 156159.

26. Lee, W.H., Sonntag, W.E., Mitschelen, M., Yan, H., and Lee, Y.W., Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain, Int. J. Radiat. Biol., 2010, vol. 280, no. 2, pp. 132144.

27. Sakuma, S., Kitamura, T., Kuroda, C., Takeda, K., Nakano, S., Hamashima, T., Kohda, T., Wada, S., Arakawa, Y., and Fujimoto, Y., All-trans arachidonic acid generates reactive oxygen species via xanthine dehydrogenase/xanthine oxidase interconversion in the rat liver cytosol in vitro, J. Clin. Biochem. Nutr., 2012, vol. 51, no. 1, vol. 51, no. 1, pp. 5560.

28. Langbein, H., Brunssen, C., Hofmann, A., Cimalla, P., Brux, M., Bornstein, S.R., Deussen, A., Koch, E., and Morawietz, H., NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice, Eur. Heart J., 2016, vol. 37, no. 22, pp. 17531761.

29. Guo, W., Wang, P., Liu, Z., and Ye, P., Analysis of differential expression of tight junction proteins in cultured oral epithelial cells altered by Porphyromonas gingivalis, Porphyromonas gingivalis lipopolysaccharide, and extracellular adenosine triphosphate, Int. J. Oral. Sci., 2018, vol. 10, no. 1, e8.

30. De Benedetto, A., Rafaels, N.M., McGirt, L.Y., Ivanov, A.I., Georas, S.N., Cheadle, C., Berger, A.E., Zhang, K., Vidyasagar, S., Yoshida, T., Boguniewicz, M., Hata, T., Schneider, L.C., Hanifin, J.M., Gallo, R.L., Novak, N., Weidinger, S., Beaty, T.H,, Leung, D.Y., Barnes, K.C., and Beck, L.A., Tight junction defects in patients with atopic dermatitis, J. Allerg. Clin. Immun., 2011, vol. 127, pp. 773786, e1e7.

31. Dickel, H., Gambichler, T., Kamphowe, J., Altmeyer, P., and Skrygan, M., Standardized tape stripping prior to patch testing induces upregulation of Hsp90, Hsp70, IL-33, TNF-alpha and IL-8/CXCL8 mRNA: new insights into the involvement of alarmins, Contact Dermatitis, 2010, vol. 63, pp. 215222.

32. Berthelot, J.-M., Sellam, J., Maugars, Y., and Berenbaum, F., Cartilage-gut-microbiome axis: a new paradigm for novel therapeutic opportunities in osteoarthritis, RMD Open, 2019, vol. 5, e001037.

33. Rajaiah, R., Perkins, D.J., Ireland, D.D.C., and Vogel, S.N., CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. 83918396.

34. Dana, N., Vaseghi, G., and Javanmard, S.H., Crosstalk between peroxisome proliferator-activated receptors and Toll-like receptors: a systematic review, Adv. Pharm. Bull., 2019, vol. 9, no. 1, pp. 1221. 15171/apb.2019.003

35. Jin, H., Kumar, L., Mathias, C., Zurakowski, D., Oettgen, H., Gorelik, L., and Geha, R., Toll-like receptor 2 is important for the T(H)1 response to cutaneous sensitization, J. Allerg. Clin. Immun., 2009, vol. 123, no. 4, pp. 875882.

36. Nahid, M.A., Satoh, M., and Chan, E.K., Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling, J. Immunol., 2011, vol. 186, pp. 17231734.

37. Ding, Y., Wang, L., Zhao, Q., Wu, Z., and Kong, L., MicroRNA-93 inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting the TLR4/NF-kB signaling pathway, Int. J. Mol. Med., 2019, vol. 43, no. 2, pp. 779790.

38. Cui, Y., Wang, X.L., Xue, J., Liu, J.Y., and Xie, M.L., Chrysanthemum morifolium extract attenuates high-fat milk-induced fatty liver through peroxisome proliferator-activated receptor alpha-mediated mechanism in mice, Nutr. Res., 2014, vol. 34, pp. 268275.

Copyright© ICBGE 2002-2022 Coded & Designed by Volodymyr Duplij Modified 01.07.22