ISSN 0564-3783  

Main page
Information to authors
Editorial board
Mobile version

In Ukrainian

Export citations

Induction of wheat resistance to the causative agent of basal bacteriosis by plant growth-promoting bacteria

Kolomiiets Y., Grygoryuk I., Likhanov A., Butsenko L., Pasichnyk L., Blume Y.


SUMMARY. The use of a suspension of cells of plant growth-promoting bacteria (Bacillus subtilis) causes an increase in the degree of resistance of spring wheat plants of the Granny variety against the causative agent of basal bacteriosis (Pseudomonas syringae pv. trofaciens) by 25 %. The initiation of the synthesis of cell wall biopolymers, in particular, cellulose, lignin and suberin, and the accumulation of the content of hydroxycinnamic and hydroxybenzoic acids in plants leaves was determined.

Key words: Triticum avesticum L., resistance, Pseudomonas syringae pv. atrofaciens, plant growth-promoting bacteria, autofluorescence, anatomical indicators

Tsitologiya i Genetika 2020, vol. 54, no. 6, pp. 14-22

  1. National University of Bioresources and Nature Management of Ukraine, 03041, Kyiv, Ukraine
  2. Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03134, Kyiv, Ukraine
  3. Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123, Kyiv, Ukraine

E-mail: julyja

Kolomiiets Y., Grygoryuk I., Likhanov A., Butsenko L., Pasichnyk L., Blume Y. Induction of wheat resistance to the causative agent of basal bacteriosis by plant growth-promoting bacteria, Tsitol Genet., 2020, vol. 54, no. 6, pp. 14-22.

In "Cytology and Genetics":
Y. V. Kolomiiets, I. P. Grigoryuk, A. F. Likhanov, L. M. Butsenko, L. A. Pasichnyk & Y. B. Blume Induction of Wheat Resistance against the Causative Agent of Basal Bacteriosis with Growth-Promoting Bacteria, Cytol Genet., 2020, vol. 54, no. 6, pp. 514521
DOI: 10.3103/S0095452720060067


1. Figueroa, M., Hammond-Kosack, K.E., and Solomon, P.S., A review of wheat diseasesa field perspective, Mol. Plant Pathol., 2018, vol. 19, no. 6, pp. 15231536.

2. Sundin, G.W., Castiblanco, L.F., Yuan, X., Zeng, Q., and Yang, C.H., Bacterial disease management: challenges, experience, innovation and future prospects: challenges in bacterial molecular plant pathology, Mol. Plant Pathol., 2016, vol. 17, no. 9, pp. 15061518.

3. Kolomiiets, Y.V., Grygoryuk, I.P., Butsenko, L.M., and Kalinichenko, A.V., Biotechnological control methods against phytopathogenic bacteria in tomatoes, Appl. Ecol. Environ. Res., 2019, vol. 17, no. 2, pp. 32153230.

4. Pfeilmeier, S., Caly, D.L., and Malone, J.G., Bacterial pathogenesis of plants: future challenges from a microbial perspective: Challenges in bacterial molecular plant pathology, Mol. Plant Pathol., 2016, vol. 17, no. 8, pp. 12981313.

5. Pasichnik, L.A., Savenko, E.A., Butsenko, L.N., Patyka, V.F., and Kalinichenko, A.B., Pseudomonas syringae in agrophytocenosis of wheat, Sci. World. Int. Sci. J., 2014, vol. 4, no. 8, pp. 5256.

6. Butsenko, L.M., Pasichnyk, L.A., and Kolomiiets, Y.V., Biological properties of morphological dissociants Pseudomonas syringae pv. Atrofaciens, Biol. Syst.: Theory Innov., 2020, vol. 11, no. 1, pp. 2837.

7. Valencia-Botin, A.J. and Cisneros-Lopez, M.E., A review of the studies and interactions of Pseudomonas syringae pathovars on wheat, Int. J. Agronom., 2012, vol. 2012, pp. 15.

8. Tarkowski, P. and Vereecke, D., Threats and opportunities of plant pathogenic bacteria, Biotechnol. Adv., 2014, vol. 32, pp. 215229.

9. Patyka, V.F., Phytopathogenic bacteria in contemporary agriculture, Microbiol. J., 2016, vol. 78, no. 6, pp. 7183.

10. Pieterse, M.J., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C.M., and Bakker, P.A.H.M., Induced systemic resistance by beneficial microbes, Ann. Rev. Phytopathol., 2014, vol. 52, pp. 347375.

11. Nanda, A.K., Andrio, E., Marino, D., Pauly, N., and Dunand, C., Reactive oxygen species during plant-microorganism early interactions, J. Integr. Plant Biol., 2010, vol. 52, pp. 195204.

12. Ali, S., Ganai B.A., Kamili, A.N., Bhat, A.A., and Mir, Z.A., Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance, Microbiol. Res., 2018, vol. 212 213, pp. 2937.

13. OBrien, J.A., Daudi, A., Butt, V.S., and Bolwell, G.P., Reactive oxygen species and their role in plant defence and cell wall metabolism, Planta, 2012, vol. 236, pp. 765779.

14. Singh, U.B., Malviya, D., Wasiullah, Singh, S., Pradhan, J.K., Singh, B.P., Roy, M., Imram, M., Pathak, N., Baisyal, B.M., Rai, J.P., Sarma, B.K., Singh, R.K., Sharma, P.K., Kaur, S.D., Manna, M.C., Sharma, S.K., and Sharma, A.K., Bioprotective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.), Microbiol. Res., 2016, vol. 192, pp. 300312.

15. Bardin, M., Ajouz, S.,Comby, M., Lopez-Ferber, M., Graillot, B., Siegwart, M., and Nicot, P.C., Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?, Front. Plant Sci., 2015; vol. 6, p. 566.

16. Köberl, M., Ramadan, E.M., Adam, M., Cardinale, M., Hallmann, J., Heuer, H., Smalla, K., and Berg, G., Bacillus and Streptomyces were selected as broad-spectrum antagonists against soil-borne pathogens from arid areas in Egypt, FEMS Microbiol. Lett., 2013, vol. 342, pp. 168178.

17. Syed-Ab Rahman, S.F., Carvalhais, L.C., Chua, E., Xiao, Y., Wass, T.J., and Schenk, P.M., Identification of soil bacterial isolates suppressing different Phytophthora spp. and promoting plant growth, Front. Plant Sci., 2018, vol. 9, p. 1502.

18. Shoaib, A., Awan, Z.A., and Khan, K.A., Intervention of antagonistic bacteria as a potential in-ducer of disease resistance in tomato to mitigate early blight, Sci. Hortic., 2019, vol. 252. pp. 2028.

19. Garcia-Fraile, P., Menendez, E., and Rivas, R., Role of bacterial biofertilizers in agriculture and forestry, AIMS Bioeng., 2015, no. 2, pp. 183205.

20. Mnif, I., Ghribi, D., Potential of bacterial derived biopesticides in pest management, Crop Prot., 2015, vol. 77, pp. 5264.

21. Lastochkina, O., Seifikalhor, M., Aliniaeifard, S., and Baymiev, A., Bacillus spp.: efficient biotic strategy to control postharvest diseases of fruits and vegetables, Plants, 2019, no. 8, pp. 124.

22. Patyka, V.P., Pasichnyk, L.A., Hvozdiak, R.I., Petrychenko, V.F., Korniichuk, O.V., Butsenko, L.M., Zhytkevych, N.V., Dankevych, L.A., Lytvynchuk, O.A., Kyrylenko, L.V., Moroz, S.M., Huliaieva, H.B., Hnatiuk, T.T., Kalinichenko, A.V., and Kharkhota, M.A., in Phytopathogenic Bacteria. Research Methods, Vinnytsia: Vindruk, 2017, pp. 8487.

23. Kolomiiets, Y., Grygoryuk, I., Likhanov, A., Butsenko, L., and Blume, Y., Induction of bacterial canker resistance in tomato plants using plant growth promoting rhizobacteria, Open Agricult. J., 2019, vol. 13. pp. 215222.

24. Pellicciari, C. and Biggiogera, M., Histochemistry of Single Molecules. Methods and Protocols, Humana Press, 2017, pp. 31337.

25. Zubairova, U.S. and Doroshkov, A.V., Wheat leaf epidermis pattern as a model for studying the influence of stressful conditions on morphogenesis, Vavilov. J. Genet. Breed., 2018; vol. 22, no. 7, pp. 837844.

26. Yang, C. and Ye, Z., Trichomes as models for studying plant cell differentiation, Cell. Mol. Life Sci., 2013, vol. 70, no. 11, pp. 19371948.

27. Goswami, D., Thakker, J.N., and Dhandhukia, P.C., Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review, Cogent. Food Agric., 2016, vol. 2, no. 1, pp. 119.

28. Hashem, A., Tabassum, B., and Abd Allah, E.F., Bacillus subtilis: a plant-growth promoting Rhizobacterium that also impacts biotic stress, Saudi J. Biol. Sci., 2019, vol. 26, no. 6, pp. 12911297. doi 10.10l6/j.sjbs.2019.05.004

29. Kudoyarova, G.R., Melentiev, A.I., Martynenko, E.V., Timergalina, L.N., Arkhipova, T.N., Shendel, G.V., Kuzmina, L.Y., Dodd, I.C., and Veselov, S.Y., Cytokinin producing bacteria stimulate amino acid deposition by wheat roots, Plant Physiol. Biochem., 2014, vol. 83. pp. 285291.

30. Sarma, B.K., Yadav, S.K., Singh, S., and Singh, H.B., Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy, Soil Biol. Biochem., 2015, vol. 87. pp. 2533. doi 10.10l6/j.soilbio.2015.04.001

31. Chowdappa, P., Kumar, S.M., Lakshmi, M.J., and Upreti, K., Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3, Biol. Contr., 2013, vol. 65, no. 1, pp. 109117.

32. Martinez-Medina, A., Fernandez, I., Sanchez-Guzman, M.J., Jung, S.C., Pascual, J.A., and Pozo, M.J., Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato, Front. Plant Sci., 2013, vol. 4, pp. 112.

33. García-Gutiérrez, M.S., Ortega-Álvaro, A., Busquets-García, A., Pérez-Ortiz, J.M., Caltana, L., Ricatti, M.J., and Manzanares, J. Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors, Neuropharmacology, 2013, vol. 73, pp. 388396. doi 10.10l6/j.neuropharm.2013.05.034

34. Beneduzi, A., Ambrosini, A., and Passaglia, L.M.P., Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents, Genet. Mol. Biol., 2012, vol. 35, no. 4, pp. 10441051.

35. Kachroo, A. and Robin, G.P., Systemic signaling during plant defense, Curr. Opin. Plant Biol., 2013, vol. 16, pp. 527533. doi 10.10l6/j.pbi.2013.06.019

36. Zeng, Y., Himmel, M.E., and Ding, S.-Y., Visualizing chemical functionality in plant cell walls, Biotechnol. Biofuels, 2017, vol. 10, p. 263.

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 21.09.21