SUMMARY. The use of a suspension of cells of plant growth-promoting bacteria (Bacillus subtilis) causes an increase in the degree of resistance of spring wheat plants of the Granny variety against the causative agent of basal bacteriosis (Pseudomonas syringae pv. аtrofaciens) by 25 %. The initiation of the synthesis of cell wall biopolymers, in particular, cellulose, lignin and suberin, and the accumulation of the content of hydroxycinnamic and hydroxybenzoic acids in plants leaves was determined.
Keywords: Triticum avesticum L., resistance, Pseudomonas syringae pv. atrofaciens, plant growth-promoting bacteria, autofluorescence, anatomical indicators
Full text and supplemented materials
References
1. Figueroa, M., Hammond-Kosack, K.E., and Solomon, P.S., A review of wheat diseases—a field perspective, Mol. Plant Pathol., 2018, vol. 19, no. 6, pp. 1523–1536. https://doi.org/10.1111/mpp.12618
2. Sundin, G.W., Castiblanco, L.F., Yuan, X., Zeng, Q., and Yang, C.H., Bacterial disease management: challenges, experience, innovation and future prospects: challenges in bacterial molecular plant pathology, Mol. Plant Pathol., 2016, vol. 17, no. 9, pp. 1506–1518. https://doi.org/10.1111/mpp.12436
3. Kolomiiets, Y.V., Grygoryuk, I.P., Butsenko, L.M., and Kalinichenko, A.V., Biotechnological control methods against phytopathogenic bacteria in tomatoes, Appl. Ecol. Environ. Res., 2019, vol. 17, no. 2, pp. 3215–3230. https://doi.org/10.15666/aeer/1702_32153230
4. Pfeilmeier, S., Caly, D.L., and Malone, J.G., Bacterial pathogenesis of plants: future challenges from a microbial perspective: Challenges in bacterial molecular plant pathology, Mol. Plant Pathol., 2016, vol. 17, no. 8, pp. 1298–1313. https://doi.org/10.1111/mpp.12427
5. Pasichnik, L.A., Savenko, E.A., Butsenko, L.N., Patyka, V.F., and Kalinichenko, A.B., Pseudomonas syringae in agrophytocenosis of wheat, Sci. World. Int. Sci. J., 2014, vol. 4, no. 8, pp. 52–56.
6. Butsenko, L.M., Pasichnyk, L.A., and Kolomiiets, Y.V., Biological properties of morphological dissociants Pseudomonas syringae pv. Atrofaciens, Biol. Syst.: Theory Innov., 2020, vol. 11, no. 1, pp. 28–37. https://doi.org/10.31548/biologiya2020.01.028
7. Valencia-Botin, A.J. and Cisneros-Lopez, M.E., A review of the studies and interactions of Pseudomonas syringae pathovars on wheat, Int. J. Agronom., 2012, vol. 2012, pp. 1–5.https://doi.org/10.1155/2012/692350
8. Tarkowski, P. and Vereecke, D., Threats and opportunities of plant pathogenic bacteria, Biotechnol. Adv., 2014, vol. 32, pp. 215–229. https://doi.org/10.1016/j.biotechadv.2013.11.001
9. Patyka, V.F., Phytopathogenic bacteria in contemporary agriculture, Microbiol. J., 2016, vol. 78, no. 6, pp. 71–83. https://doi.org/10.15407/microbiolj78.06.071
10. Pieterse, M.J., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C.M., and Bakker, P.A.H.M., Induced systemic resistance by beneficial microbes, Ann. Rev. Phytopathol., 2014, vol. 52, pp. 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340
11. Nanda, A.K., Andrio, E., Marino, D., Pauly, N., and Dunand, C., Reactive oxygen species during plant-microorganism early interactions, J. Integr. Plant Biol., 2010, vol. 52, pp. 195–204. https://doi.org/10.1111/j.1744-7909.2010.00933.x
12. Ali, S., Ganai B.A., Kamili, A.N., Bhat, A.A., and Mir, Z.A., Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance, Microbiol. Res., 2018, vol. 212– 213, pp. 29–37.https://doi.org/10.1016/j.micres.2018.04.008
13. O’Brien, J.A., Daudi, A., Butt, V.S., and Bolwell, G.P., Reactive oxygen species and their role in plant defence and cell wall metabolism, Planta, 2012, vol. 236, pp. 765–779. https://doi.org/10.1007/s00425-012-1696-9
14. Singh, U.B., Malviya, D., Wasiullah, Singh, S., Pradhan, J.K., Singh, B.P., Roy, M., Imram, M., Pathak, N., Baisyal, B.M., Rai, J.P., Sarma, B.K., Singh, R.K., Sharma, P.K., Kaur, S.D., Manna, M.C., Sharma, S.K., and Sharma, A.K., Bioprotective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.), Microbiol. Res., 2016, vol. 192, pp. 300–312. https://doi.org/10.1016/j.micres.2016.08.007
15. Bardin, M., Ajouz, S.,Comby, M., Lopez-Ferber, M., Graillot, B., Siegwart, M., and Nicot, P.C., Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?, Front. Plant Sci., 2015; vol. 6, p. 566. https://doi.org/10.3389/fpls.2015.00566
16. Köberl, M., Ramadan, E.M., Adam, M., Cardinale, M., Hallmann, J., Heuer, H., Smalla, K., and Berg, G., Bacillus and Streptomyces were selected as broad-spectrum antagonists against soil-borne pathogens from arid areas in Egypt, FEMS Microbiol. Lett., 2013, vol. 342, pp. 168–178. https://doi.org/10.1111/1574-6968.12089
17. Syed-Ab Rahman, S.F., Carvalhais, L.C., Chua, E., Xiao, Y., Wass, T.J., and Schenk, P.M., Identification of soil bacterial isolates suppressing different Phytophthora spp. and promoting plant growth, Front. Plant Sci., 2018, vol. 9, p. 1502.https://doi.org/10.3389/fpls.2018.01502
18. Shoaib, A., Awan, Z.A., and Khan, K.A., Intervention of antagonistic bacteria as a potential in-ducer of disease resistance in tomato to mitigate early blight, Sci. Hortic., 2019, vol. 252. pp. 20–28. https://doi.org/10.1016/j.scienta.2019.02.073
19. Garcia-Fraile, P., Menendez, E., and Rivas, R., Role of bacterial biofertilizers in agriculture and forestry, AIMS Bioeng., 2015, no. 2, pp. 183–205. https://doi.org/10.3934/bioeng.2015.3.183
20. Mnif, I., Ghribi, D., Potential of bacterial derived biopesticides in pest management, Crop Prot., 2015, vol. 77, pp. 52–64. https://doi.org/10.1016/j.cropro.2015.07.017
21. Lastochkina, O., Seifikalhor, M., Aliniaeifard, S., and Baymiev, A., Bacillus spp.: efficient biotic strategy to control postharvest diseases of fruits and vegetables, Plants, 2019, no. 8, pp. 1–24. https://doi.org/10.3390/plants8040097
22. Patyka, V.P., Pasichnyk, L.A., Hvozdiak, R.I., Petrychenko, V.F., Korniichuk, O.V., Butsenko, L.M., Zhytkevych, N.V., Dankevych, L.A., Lytvynchuk, O.A., Kyrylenko, L.V., Moroz, S.M., Huliaieva, H.B., Hnatiuk, T.T., Kalinichenko, A.V., and Kharkhota, M.A., in Phytopathogenic Bacteria. Research Methods, Vinnytsia: Vindruk, 2017, pp. 84–87.
23. Kolomiiets, Y., Grygoryuk, I., Likhanov, A., Butsenko, L., and Blume, Y., Induction of bacterial canker resistance in tomato plants using plant growth promoting rhizobacteria, Open Agricult. J., 2019, vol. 13. pp. 215–222. https://doi.org/10.2174/18743315019130-10215
24. Pellicciari, C. and Biggiogera, M., Histochemistry of Single Molecules. Methods and Protocols, Humana Press, 2017, pp. 313–37.
25. Zubairova, U.S. and Doroshkov, A.V., Wheat leaf epidermis pattern as a model for studying the influence of stressful conditions on morphogenesis, Vavilov. J. Genet. Breed., 2018; vol. 22, no. 7, pp. 837–844. https://doi.org/10.18699/VJ18.32-o
26. Yang, C. and Ye, Z., Trichomes as models for studying plant cell differentiation, Cell. Mol. Life Sci., 2013, vol. 70, no. 11, pp. 1937–1948. https://doi.org/10.1007/s00018-012-1147-6
27. Goswami, D., Thakker, J.N., and Dhandhukia, P.C., Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review, Cogent. Food Agric., 2016, vol. 2, no. 1, pp. 1–19. https://doi.org/10.1080/23311932.2015.1127500
28. Hashem, A., Tabassum, B., and Abd Allah, E.F., Bacillus subtilis: a plant-growth promoting Rhizobacterium that also impacts biotic stress, Saudi J. Biol. Sci., 2019, vol. 26, no. 6, pp. 1291–1297. doi 10.10l6/j.sjbs.2019.05.004
29. Kudoyarova, G.R., Melentiev, A.I., Martynenko, E.V., Timergalina, L.N., Arkhipova, T.N., Shendel, G.V., Kuz’mina, L.Y., Dodd, I.C., and Veselov, S.Y., Cytokinin producing bacteria stimulate amino acid deposition by wheat roots, Plant Physiol. Biochem., 2014, vol. 83. pp. 285–291.https://doi.org/10.1016/j.plaphy.2014.08.015
30. Sarma, B.K., Yadav, S.K., Singh, S., and Singh, H.B., Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy, Soil Biol. Biochem., 2015, vol. 87. pp. 25–33. doi 10.10l6/j.soilbio.2015.04.001
31. Chowdappa, P., Kumar, S.M., Lakshmi, M.J., and Upreti, K., Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3, Biol. Contr., 2013, vol. 65, no. 1, pp. 109–117. https://doi.org/10.10l6/j.biocontrol.2012.11.009
32. Martinez-Medina, A., Fernandez, I., Sanchez-Guzman, M.J., Jung, S.C., Pascual, J.A., and Pozo, M.J., Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato, Front. Plant Sci., 2013, vol. 4, pp. 1–12. https://doi.org/10.3389/fpls.2013.00206
33. García-Gutiérrez, M.S., Ortega-Álvaro, A., Busquets-García, A., Pérez-Ortiz, J.M., Caltana, L., Ricatti, M.J., and Manzanares, J. Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors, Neuropharmacology, 2013, vol. 73, pp. 388–396. doi 10.10l6/j.neuropharm.2013.05.034
34. Beneduzi, A., Ambrosini, A., and Passaglia, L.M.P., Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents, Genet. Mol. Biol., 2012, vol. 35, no. 4, pp. 1044–1051. https://doi.org/10.1590/sl415-47572012000600020
35. Kachroo, A. and Robin, G.P., Systemic signaling during plant defense, Curr. Opin. Plant Biol., 2013, vol. 16, pp. 527–533. doi 10.10l6/j.pbi.2013.06.019
36. Zeng, Y., Himmel, M.E., and Ding, S.-Y., Visualizing chemical functionality in plant cell walls, Biotechnol. Biofuels, 2017, vol. 10, p. 263. https://doi.org/10.1186/sl3068-017-0953-3