ISSN 0564-3783  



Main page
Contacts
Themes
Archive  
Themes
Subscription
Information to authors
Editorial board
Mobile version


In Ukrainian

Export citations
UNIMARC
BibTeX
RIS





Differently green-synthesized CdS quantum dots: comparison of toxicity, antiproliferative effects and adhesion activity on human cells

Garmanchuk L.V., Nehelia A.O., Inomistova M., Khranovska N.M., Tolstanova G.M., Blume Ya.B., Yemets A.I.

 


[Free Full Text (pdf)]Article Free Full Text (pdf)  

Quantum dots (QDs) are typical IIЦVI semiconductor materials, owing to their unique optical properties and tunable photoluminescence, have received much interest in the field of electronic and biomedical applications. However, the cytotoxicity of QDs has become a major concern for their safe usage in bioimaging, intracellular delivery or tracking molecules and organells. We have previously developed a novel alternative approach for the production of CdS QDs extracellularly by the biological synthesis using bacteria Escherichia coli, fungi Pleurotus ostreatus and plant Linaria maroccana as biomatrices. Produced nanoparticles are stable and luminescent, have a range of sizes from 2 to 10 nm in diameter. In the present research we have evaluated cytotoxic/cytostatic effects, proliferative activity, adhesive potential of produced CdS nanoparticles using HeLa cells, tumor cells of human T-and B-lymphocytes, AGS cancer cell line by MTT-assay and flow cytometry methods. It has been found that QDs have reduced toxicity as compared to inorganic cadmium sulfide which makes them attractive as a new type of non-toxic luminescent probes for bioimaging applications in cytological studies.

Key words: Quantum dots, cadmium sulfide, cytotoxicity, cancer cells, proliferative activity, adhesive potential

Tsitologiya i Genetika 2019, vol. 53, no. 2, pp. 43-55

E-mail: liudmyla_garmanchuk ukr.net, marie0589 gmail.com, yemets.alla nas.gov.ua, nkhranovska ukr.net

Garmanchuk L.V., Nehelia A.O., Inomistova M., Khranovska N.M., Tolstanova G.M., Blume Ya.B., Yemets A.I. Differently green-synthesized CdS quantum dots: comparison of toxicity, antiproliferative effects and adhesion activity on human cells, Tsitol Genet., 2019, vol. 53, no. 2, pp. 43-55.

In "Cytology and Genetics":
L. V. Garmanchuk, M. N. Borovaya, A. O. Nehelia, M. Inomistova, N. M. Khranovska, G. M. Tolstanova, Ya. B. Blume, A. I. Yemets CdS Quantum Dots Obtained by УGreenФ Synthesis: Comparative Analysis of Toxicity and Effects on the Proliferative and Adhesive Activity of Human Cells, Cytol Genet., 2019, vol. 53, no. 2, pp. 132Ц142
DOI: 10.3103/S0095452719020026


References

1. Zhao, M.X. and Zeng, E.Z., Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging, Nanoscale Res. Lett., 2015, vol. 10, pp. 1Ц9. https://doi.org/10.1186/s11671-015-0873-8

2. Rosentha, S.J., Chang, J.C., Kovtun, O., McBride, J.R., and Tomlinson, I.D., Biocompatible quantum dots for biological applications, Chem. Biol., 2011, vol. 18, no. 1, pp. 10Ц24. https://doi.org/10.1016/j.chembiol.2010.11.013

3. Medintz, I.L., Mattoussi, H., and Clapp, A.R., Potential clinical applications of quantum dots, Int. J. Nanomed., 2008, vol. 3, no. 2, pp. 151Ц167.

4. Hoshino, A., Fujioka, K., Oku, T., Nakamura, S., Suga, M., Yamaguchi, Y., Suzuki, K., Yasuhara, M., and Yamamoto, K., Quantum dots targeted to the assigned organelle in living cells, Microbiol. Immunol., 2004, vol. 48, no. 12, pp. 985Ц994.

5. Tamašauskaitė-Tamašiūnaitė, L., Grincienė, G., Šimkūnaitė-Stanynienė, B., Naruškevicius, L., Pakštas, V., Selskis, A., and Norkus, E., Preparation of CdS nanoparticles by microwave-assisted synthesis, Chemija, 2015, vol. 26, no. 3, pp. 193Ц197.

6. Wang, G.Z., Chen, W., Liang, C.H., Wang, Y.W., Meng, G.W., and Zhang, L.D., Preparation and characterization of CdS nanoparticles by ultrasonic irradiation, Inorg. Chem. Commun., 2001, vol. 4, no. 4, pp. 208Ц210.

7. Marchiol, L., Synthesis of metal nanoparticles in living plants, Ital. J. Agron., 2012, vol. 7, no. 3, pp. 274Ц282. https://doi.org/10.4081/ija.2012.e37

8. Borovaya, M.N., Naumenko, A.P., Matvieieva, N.A., Blume, Y.B., and Yemets, A.I., Biosynthesis of luminescent CdS quantum dots using plant hairy root culture, Nanocsale Res. Lett., 2014, vol. 9, pp. 1Ц7. https://doi.org/10.1186/1556-276X-9-686

9. Borovaya, M.N., Naumenko, A.P., Yemets, A.I., and Blume, Y.B., Stability of the CdS quantum dots, synthesized by the bacteria Escherichia coli, Rep. Natl. Acad. Sci. Ukraine, 2014, vol. 7, pp. 145Ц151.

10. Borovaya, M.N., Naumenko, A.P., Pirko, Y.V., Krupodorova, T.A., Yemets, A.I., and Blume, Y.B., Production of CdS quantum dots with the use of the fungus Pleurotus ostreatus, Rep. Natl. Acad. Sci. Ukraine, 2014, vol. 2, pp. 153Ц159.

11. Borovaya, M., Pirko, Y., Krupodorova, T., Naumenko, A., Blume, Y., and Yemets, A., Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm, Biotechnol. Biotechn. Equipm., 2015, vol. 29, no. 6, pp. 1156Ц1163. https://doi.org/10.1080/13102818.2015.1064264

12. Borovaya, M.N., Burlaka, O.M., Naumenko, A.P., Blume, Ya.B., and Yemets, A.I., Extracellular synthesis of luminescent CdS quantum dots using plant cell culture, Nanoscale Res. Lett., 2016, vol. 11, no. 1, pp. 1Ц8. https://doi.org/10.1186/s11671-016-1314-z

13. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays, J. Immun. Meth., vol. 65, nos. 1Ц2, pp. 55Ц63.

14. McDonald, J.H., Handbook of Biological Statistics, Baltimore, Maryland: Sparky House Publishing, 2008.

15. Kong, B., Seog, J.H., Graham, L.M., and Lee, S.B., Experimental considerations on the cytotoxicity of nanoparticles, Nanomedicine, 2011, vol. 6, pp. 929Ц941. https://doi.org/10.2217/nnm.11.77

16. Bendas, G. and Borsig, L., Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins, Int. J. Cell Biol., 2012, vol. 2012, p. 10. https://doi.org/10.1155/2012/676731

17. Goo, S., Choi, Y.J., Lee, Y., Lee, S., and Chung, H.W., Selective effects of curcumin on CdSe/ZnS quantum-dot-induced phototoxicity using UVA irradiation in normal human lymphocytes and leukemia cells, Toxicol. Res., 2013, vol. 29, no. 1, pp. 35Ц42. https://doi.org/10.5487/TR.2013.29.1.035

18. Ober-Blobaum, J.L., Engelhardt, G., Hebel, S., Rink, L., and Haase, H., Cadmium ions promote monocytic differentiation of humanleukemia HL-60 cells treated with 1a,25-dihydroxyvitamin D3, Biol. Chem., 2010, vol. 391, no. 11, pp. 1295Ц303. https://doi.org/10.1515/BC.2010.135

19. Zhou, J., Yang, Y., and Zhang, C., Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application, Chem. Rev., 2015, vol. 115, no. 21, pp. 11669Ц11717. https://doi.org/10.1021/acs.chemrev.5b00049

20. Katsumiti, A., Gilliland, D., Arostegui, I., and Cajaraville, M.P., Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel Mytilus galloprovincialis, Aquat. Toxicol., 2014, vol. 153, pp. 39Ц52. https://doi.org/10.1016/j.aquatox.2014.02.003

21. Munari, M., Sturve, J., Frenzilli, G., Sandersd, M.B., Brunelli, A., Marcomini, A., Nigroc, M., and Lyons, B.P., Genotoxic effects of CdS quantum dots and Ag2S nanoparticles in fish cell lines (RTG-2), Mutat. Res. Gen. Toxicol. Environ. Mutagen., 2014, vols., 775Ц776, pp. 89Ц93. https://doi.org/10.1016/j.mrgentox.2014.09.003

22. Cho, S.J., Maysinger, D., Jain, M., Roder, B., Hackbarth, S., and Winnik, F.M., Long-term exposure to CdTe quantum dots causes functional impairments in live cells, Langmuir, 2007, vol. 23, no. 4, pp. 1974Ц1980. https://doi.org/10.1021/la060093j

23. Li, K.G., Chen, J.T., Bai, S.S., Wen, X., Song, S.Y., Yu, Q., Li, J., and Wang, Y.Q., Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodifiedcadmium sulphide quantum dots, Toxicol. In Vitro, 2009, vol. 23, no. 6, pp. 1007Ц1013. https://doi.org/10.1016/j.tiv.2009.06.020

24. Hossain, Sk.T. and Mukherjee, S.K., Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells, J. Hazard. Mater., 2013, vol. 260, pp. 1073Ц1082. https://doi.org/10.1016/j.jhazmat.2013.07.005

25. Galeone, A., Vecchio, G., Malvindi, M.A., Brunetti, V., Cingolani, R., and Pompa, P.P., In vivo assessment of CdSe-ZnS quantum dots: coating dependent bioaccumulation and genotoxicity, Nanoscale, 2012, vol. 4, no. 2, pp. 6401Ц6407. https://doi.org/10.1039/c2nr31826a

26. Protsenko, O.V., Dudka, O.A., Kozeretskaya, I.A., Inomystova, M.V., Borovaya, M.N., Pirko, Ya.V., Tolstanova, A.N., Ostapchenko, L.I., and Yemets, A.I., Estimation of toxicity and genotoxicity of CdS quantum dots synthesized with the help of biological matrices, Proc. Natl. Acad. Sci. Ukraine, 2016, vol. 4, pp. 111Ц117.

27. Borovaya, M.N., Burlaka, O.M., Yemets, A.I., and Blume, Ya.B., Biosynthesis of Quantum Dots and Their Potential Applications in Biology and Biomedicine, Springer International Publishing Switzerland, 2015, vol. 167, no. 24, pp. 339Ц362. https://doi.org/10.1007/978-3-319-18543-9_24

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 18.09.21