ISSN 0564-3783  



Main page
Contacts
Themes
Archive  
Themes
Subscription
Information to authors
Editorial board
Mobile version


In Ukrainian

Export citations
UNIMARC
BibTeX
RIS





Using micronucleus test in Pinus pallasiana D. Don and Picea abies (L.) Krst. to assess the influence of technogenic pollution

Korshikov I.I., Belonozhko Yu.A., Lapteva E.V.

 


[Free Full Text (pdf)]Article Free Full Text (pdf)  

SUMMARY. The results of the study of micronuclei (MN) frequency in the meristem of seedlings Pinus pallasiana D. Don and Picea abies (L.) Karst. from natural populations and plantings of technogenic contaminated territories are presented. The level of cells with MN was 0.95 0.13 % in the control population of P. pallasiana. An increase in the level of cells with MN was observed in the conditions of introduction and technogenic pollution (2,413,38 %). Similar results are shown for P. abies. The pathological cell contained a different amount of MN (from 1 to 2 for P. pallasiana and from 1 to 6 for P. abies). The size of the MN have varied from 0,13 to 14,93 % diameters of the main nuclei in P. pallasiana cells and from 0,07 to 61,87 % in P. abies. Multinuclear cells and cells with an irregular shape nuclear were observed. Correlation dependence was established between cytogenetic disorders and MN frequency (r = 0,98). It is proposed to use the MN of seedlings of studied species to assess the genotoxicity of technogenically contaminated areas.

Tsitologiya i Genetika 2019, vol. 53, no. 2, pp. 12-20

E-mail: ivivkor gmail.com, belonojkoua gmail.com, botgard ukpost.ua

Korshikov I.I., Belonozhko Yu.A., Lapteva E.V. Using micronucleus test in Pinus pallasiana D. Don and Picea abies (L.) Krst. to assess the influence of technogenic pollution, Tsitol Genet., 2019, vol. 53, no. 2, pp. 12-20.

In "Cytology and Genetics":
I. I. Korshikov, Yu. A Belonozhko, E. V. Lapteva The Use of a Micronucleus Test in Pinus pallasiana D. Don and Picea abies (L.) Karst. for the Assessment of Technogenic Pollutions Influence, Cytol Genet., 2019, vol. 53, no. 2, pp. 106112
DOI: 10.3103/S0095452719020051


References

1. Yemets, A.I., Blume, R.Ya., and Sorochinsky, B.V., Adaptation of the gymnosperms to the conditions of irradiation in the Chernobyl zone: from morphological abnormalities to the molecular genetic consequences, Cytol. Genet., 2016, vol. 50, no. 6, pp. 415419. https://doi.org/10.3103/S0095452716060086

2. Kurinny, D.A. and Kostikov, I.Yu., Co-cultivation of unicellular green algae (Chlorophyta, Chlorophyceae) and lymphocytes of peripheral blood of humans as a test system for radiobiological studies, Int. J. Algae, 2017, vol. 19, no. 2, pp. 163172. https://doi.org/10.1615/InterJAlgae.v19.i2.60

3. Decordier, I., Papine, A., Vande-Loock, K., Plas, G., Soussaline, F., and Kirsch-Volders, M., Automated image analysis of micronuclei by IMSTAR for biomonitoring, Mutagenesis, 2011, vol. 26, no. 1, pp. 163168. https://doi.org/10.1093/mutage/geq063

4. Hussain, B., Sultana, T., Sultana, S., Al-Ghanim, K.A., Masood, Sh., Ali, M., and Mahboob, Sh., Microelectrophoretic study of environmentally induced DNA damage in fish and its use for early toxicity screening of freshwater bodies, Environ. Monit. Assess., 2017, vol. 189, pp. 115126. https://doi.org/10.1007/s10661-017-5813-x

5. Rocha, C.A., Cunha, L.A., Pinheiro, R.H., Bahia, M.O., and Burbano, R.M., Studies of micronuclei and other nuclear abnormalities in red blood cells of Colossoma macropomum exposed to methylmercury, Genet. Mol. Biol., 2011, vol. 34, no. 4, pp. 694697. https://doi.org/10.1590/S1415-47572011000400024

6. Chang, P., Li, Ya., and Li, D., Micronuclei levels in peripheral blood lymphocytes as a potential biomarker for pancreatic cancer risk, Carcinogenesis, vol. 32, no. 2, pp. 210215. https://doi.org/10.1093/carcin/bgq247

7. Güez, C.M., Waczuk, E.P., Pereira, K.B., Querol, M.V., Rocha, J.B., and Oliveira, L.F., In vivo and in vitro genotoxicity studies of aqueous extract of Xanthium spinosum, Brazil. J. Pharmaceut. Sci., 2012, vol. 48, no. 3, pp. 461467. https://doi.org/10.1590/S1984-82502012000300013

8. Braham, R.P., Blazer, V.S., Shaw, C.H., and Mazik, P.M., Micronuclei and other erythrocyte nuclear abnormalities in fishes from the Great Lakes Basin, USA, Environ. Mol. Mutagen., 2017, vol. 58, no. 8, pp. 57081. https://doi.org/10.1002/em.22123

9. Kanev, M., Özdemir, K., and Gökalp, F., Genotoxic evaluation of the Ergene River, Turkey, on mosquito fish, Gambussia affinis (Baird and Girard, 1853) using the piscine micronucleus assay, Int. J. Aquat. Biol., 2016, vol. 4, pp. 330339. https://doi.org/10.22034/ijab.v4i5.171

10. Kumar, M.K., Avelyno, S., and Shyama, K., Genotoxic Biomarkers As Indicators of Marine Pollution, Marine Pollution and Microbial Remediation, Singapore: Springer, 2017, pp. 263270. https://doi.org/10.1007/978-981-10-1044-6_17

11. Baršienė, J., Andreikėnaitė, L., and Bjornstad, A., Induction of micronuclei and other nuclear abnormalities in blue mussels Mytilus edulis after 1-, 2-, 4- and 8-day treatment with crude oil from the North Sea, Ekologija, 2010, vol. 56, nos. 34, pp. 124131. https://doi.org/10.2478/v10055-010-0018-4

12. Fenech, M., Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells, Mutagenesis, 2011, vol. 26, pp. 125132. https://doi.org/10.1093/mutage/geq052

13. Andrade, V.M., Silva, J.D., Silva, F.R., Heuser, V.D., Dias, J.F., Yoneama, M.L., and Freitas, T.R., Fish as bioindicators to assess the effects of pollution in two southern Brazilian rivers using the Comet assay and micronucleus test, Environ. Mol. Mutagen., 2004, vol. 44, no. 5, pp. 459468. https://doi.org/10.1002/em.20070

14. Boriollo, M.F., Resende, M.R., Silva, T.A., Publio, J.Yo., Souza, L.S., Dias, C.T., de Mello Silva Oliveira, N., and Fiorini, J.E., Evaluation of the mutagenicity and antimutagenicity of Ziziphus joazeiro Mart. bark in the micronucleus assay, Genet. Mol. Biol., 2014, vol. 37, no. 2, pp. 428438.

15. Saleh, K. and Sarhan, M.A., Clastogenic analysis of chicken farms using micronucleus test in peripheral blood, J. Appl. Sci. Res., 2007, vol. 3, no. 12, pp. 16461649.

16. Martínez-Haro, M., Balderas-Plata, M.A., Pereda-Solís, M.E., Arellano-Aguilar, O., Hernández-Millán, C.L., Mundo-Hernández, V., and Torres-Bugarín, O., Anthropogenic influence on blood biomarkers of stress and genotoxicity of the burrowing owl (Athene cunicularia), J. Biodivers. Endanger. Species, 2017, vol. 5, no. 3, pp. 196199. https://doi.org/10.4172/2332-2543.1000196

17. Wang, Q.L., Zhang, L.T., Zou, J.H., Liu, D.H., and Yue, J.Y., Effects of cadmium on root growth, cell division and micronuclei formation in root tip cells of Allium cepa var. agrogarum L., Fyton, 2014, vol. 83, pp. 291298.

18. Kalaev, V., Artyukhov, V., and Nechaeva, M., Micronucleus test of human oral buccal epithelium: problems, progress and prospects, Cytol. Genet., 2014, vol. 48, no. 6, pp. 6280. https://doi.org/10.3103/S0095452714060061

19. Belousov, M.V., Mashkina, O.S., and Popov, V.N., Cytogenetic response of Scots pine (Pinus sylvestris Linnaeus, 1753) (Pinaceae) to heavy metals, Comp. Cytogenet., 2012, vol. 6, no. 1, pp. 93106. https://doi.org/10.3897/CompCytogen.v6i1

20. Gökalp, F.D. and Güner, U., Induction of micronuclei and nuclear abnormalities in erythrocytes of mosquito fish following exposure to the pyrethroid insecticide lambda-cyhalothrin, Mutat. Res./Genet. Toxicol. Environ. Mutagenesis, 2011, vol. 726, pp. 104108. https://doi.org/10.1016/j.mrgentox.2011.05.004

21. Zhuleva, L.Yu. and Dubinin, N.P., Use of the micronucleus test for assessing the ecological situation in regions of the Astrakhan district, Genetika, 1994, vol. 30, no. 7, pp. 9991004.

22. Korshikov, I.I., Tkacheva, Yu.A., and Privalikhin, S.N., Cytogenetic abnormalities in Norway spruce (Picea abies (L.) Karst.) seedlings from natural populations and an introduction plantation, Cytol. Genet., 2012, vol. 46, no. 5, pp. 280284. https://doi.org/10.3103/S0095452712050064

23. Goryachkina, O.V. and Sizikh, O.A., Cytogenetical reactions of conifer trees in antropogenous disturbed regions of Krasnoyarsk and its environs, Khvoinye Boreal. Zony, 2012, vol. 30, nos. 12, pp. 4651.

24. Belousov, M.V. and Mashkina, O.S., Cytogenetic response of Scots pine (Pinus sylvestris L.) to cadmium and nickel, Tsitologiia, 2015, vol. 57, no. 6, pp. 459464.

25. Dubrovna, O.V., Cytogenetic effect of NaCl and Na2SO4 on the fodder beet callus culture, Fiziol. Biokhim. Kult. Rast., 2005, vol. 37, no. 1, pp. 3039.

26. Kunakh, V.A., Mechanisms and some regularities to somaclonal variability of the plants, Visn. Ukr. Tovar. Henet. Selekts., 2003, vol. 1, no. 1, pp. 101106.

27. Bonassi, S., Coskun, E., Ceppi, M., Lando, C., Bolognesi, C., Burgaz, S., and Fenech, M., The Human MicroNucleus project on exfoliated buccal cells: The role of lifestyle, host factors, occupational exposures, health status, and assay protocol, Mutat. Res./Rev. Mutat. Res., 2011, vol. 728, pp. 8897. https://doi.org/10.1016/j.mrrev.2011.06.005

28. Torres-Bugarín, O., Pacheco-Gutiérrez, A.G., Vázquez-Valls, E., Ramos-Ibarra, M.L., and Torres-Mendoza, B.M., Micronuclei and nuclear abnormalities in buccal mucosa cells in patients with anorexia and bulimia nervosa, Mutagenesis, 2014, vol. 29, no. 6, pp. 427431. https://doi.org/10.1093/MUTAGE/GEU044

29. Vergolyas, M.R., Lutsenko, T.V., and Goncharuk, V.V., Cytotoxic effect of chlorophenols on cells of the root meristem of Welsh onion (Allium fistulosum L.) seeds, Cytol. Genet., 2013, vol. 47, no. 1, pp. 3438. https://doi.org/10.3103/S009545271

30. Fenech, M., Kirsch-Volders, M., Natarajan, A.T., Surralles, J., Crott, J.W., Parry, J., Norppa, H., Eastmond, D.A., Tucker, J.D., and Thomas, P., Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells, Mutagenesis, 2011, vol. 26, no. 1, pp. 125132. https://doi.org/10.1093/mutage/geq052

31. Luzhna, L., Kathiria, P., and Kovalchuk, O., Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond, Front. Genet., 2013, vol. 4, pp. 131148. https://doi.org/10.3389/fgene.2013.00131

32. Korshikov, I.I., Lapteva, H.V., and Belonozhko, Yu.A., Pollen quality and cytogenetic changes of Scots pine as indicators of the effect of technogenic environmental pollution of Krivoy Rog, Contemp. Probl. Ecol., 2015, vol. 8, no. 2, pp. 250255. https://doi.org/10.1134/S1995425515020109

33. Bajpai, A. and Singh, A.K., Meiotic Behavior of Carica papaya L.: spontaneous chromosome instability and elimination in important cvs. in North Indian conditions, Cytologia, 2006, vol. 71, no. 2, pp. 131136. https://doi.org/10.1508/cytologia.71.131

34. Kalashnik, N.A., Chromosome aberrations as indicator of technogenic impact on conifer stands, Russ. J. Ecol., 2008, vol. 39, no. 4, pp. 261271. https://doi.org/10.1134/S106741360804005X

35. Kovalchuk, O., Burke, P., Arkhipov, A., Kuchma, N., James, S.J., Kovalchuk, I., and Pogribny, I., Genome hypermethylation in Pinus silvestris of Chernobyla mechanism for radiation adaptation?, Mutat. Res., 2003, vol. 529, nos. 12, pp. 1320. https://doi.org/10.1016/S0027-5107(03)00103-9

36. Korshikov, I.I., Lapteva, Ye.V., and Tkachova, Yu.A., Variation in quantitative dimensional characteristics of nucleoli and nuclei in seed cells of Pinus pallasiana D. Don (protected and human disturbed areas in the steppe zone of Ukraine), Ukr. Bot. J., 2013, vol. 70, no. 6, pp. 805812.

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 23.09.21