РЕЗЮМЕ. Мієлопроліферативні новоутворення, серед яких ідіопатична тромбоцитемія, первинний мієлофіброз та поліцитемія, становлять підгрупу гематологічних розладів у межах підгрупи без наявності філадельфійської хромосоми. Участь молекулярної мережі, задіяної в сигнальному шляху JAK/STAT, була продемонстрована в декількох дослідженнях генетичного ландшафту мієлопроліферативних розладів. Такі гени деубіквітинування, як CYLD та A20, відомі як негативні регулятори імунних реакцій. У цьому дослідженні ми оцінили рівні експресії генів CYLD, A20, SHP та STAT за допомогою кількісної ПЛР. Крім того, було застосовано генотипування за допомогою конкурентної алельспецифічної ПЛР (KASP) для визначення генотипів 5 варіантів у межах генів A20, JAK2, HLA та OR10Q2P. Більше того, було використано імуноферментний аналіз (ІФА) для кількісного визначення рівнів запальних цитокінів та ракового антигену 125 (СА-125). Результати показали, що рівні мРНК CYLD, A20 і SHP1 були значно нижчими у всіх пацієнтів з мієлопроліферативними новоутвореннями, тоді як експресія SHP2, STAT1 і STAT6 була значно підвищена у пацієнтів з ідіопатичною тромбоцитемією порівняно з контролем. У випадках мієлопроліферативних новоутворень концентрації запальних цитокінів IL6, TNFα, IL1β, а також білкаантигену раку CA125 були підвищеними. Результати генотипування показали, що rs10974947 в JAK2, rs200878487 в A20 та rs2281389 в HLA мали вищу частоту у випадках МПН порівняно з контролем. Важливо, що в досліджуваній популяції було виявлено дві нові асоціації між варіантом HLA rs2281389 (p = 0,004, OR = 2,6, 95% CI = 1,36–4,85) та OR10Q2P rs12289961 – варіантом, близьким до LPXN (OR = 1,95, 95% CI = 1,01–3,75), з поліцитемією. Ці дані свідчать про те, що гени A20, JAK2, HLA та LPXN можуть відігравати важливу роль у формуванні фенотипу захворювання. Тим не менш, для кращого розуміння патогенезу мієлопроліферативних новоутворень необхідно провести подальші функціональні дослідження цих генів.
Ключові слова: A20, CYLD, мієлопроліферативні новоутворення, SHP, STAT, HLA

Повний текст та додаткові матеріали
Цитована література
Arber, D.A., Orazi, A., Hasserjian, R., Thiele, J., Borowitz, M.J., Le Beau, M.M., et al., The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia, Blood, 2016, vol. 127, pp. 2391–2405. https://doi.org/10.1182/blood-2016-03-643544
Arora, M., Kaul, D., and Varma, N., Functional nature of a novel mutant CYLD observed in pediatric lymphoblastic B-cell leukemia, Pediatr. Blood Cancer, 2015, vol. 62, pp. 1066–1069. https://doi.org/10.1002/pbc.25387
Barbui, T., Finazzi, G., and Falanga, A., Myeloproliferative neoplasms and thrombosis, Blood, 2013, vol. 122, pp. 2176–2184. https://doi.org/10.1182/blood-2013-03-460154
Birgen, D., Ertem, U., Duru, F., Sahin, G., Yuksek, N., Bozkurt, C., et al., Serum Ca 125 levels in children with acute leukemia and lymphoma, Leukemia Lymphoma, 2005, vol. 46, pp. 1177–1181. https://doi.org/10.1080/10428190500096690
Bruns, H.A. and Kaplan, M.H., The role of constitutively active Stat6 in leukemia and lymphoma, Crit. Rev. Oncol./Hematol., 2006, vol. 57, pp. 245–253. https://doi.org/10.1016/j.critrevonc.2005.08.005
Canh, N.X., Giang, N.V., Nghia, V.X., Sopjani, M., Ngan, N.T.T., Hoang, N.H., et al., Regulation of cell activation by A20 through STAT signaling in acute lymphoblastic leukemia, J. Recept. Signal Transduction, 2021, vol. 41, pp. 331–338. https://doi.org/10.1080/10799893.2020.1808678
Chen, J., Yu, W.M., Daino, H., Broxmeyer, H.E., Druker, B.J., and Qu, C.K., SHP-2 phosphatase is required for hematopoietic cell transformation by Bcr-Abl, Blood, 2007, vol. 109, pp. 778–785. https://doi.org/10.1182/blood-2006-04-019141
Chew, V. and Lam, K.P., Leupaxin negatively regulates B cell receptor signaling, J. Biol. Chem., 2007, vol. 282, pp. 27181–27191. https://doi.org/10.1074/jbc.M704625200
Dai, H.P., Xue, Y.Q., Zhou, J.W., Li, A.P., Wu, Y.F., Pan, J.L., et al., LPXN, a member of the paxillin superfamily, is fused to RUNX1 in an acute myeloid leukemia patient with a t(11;21)(q12;q22) translocation, Genes, Chromosomes Cancer, 2009, vol. 48, pp. 1027–1036. https://doi.org/10.1002/gcc.20704
Duy, P.N., Thuy, N.T., Trang, B.K., Giang, N.H., Van, N.T.H., and Xuan, N.T., Regulation of NF-κB- and STAT1-mediated plasmacytoid dendritic cell functions by A20, PloS One, 2019, vol. 14, p. e0222697. https://doi.org/10.1371/journal.pone.0222697
Falcao, F., Oliveira, F., Cantarelli, F., Cantarelli, R., Brito, J.P., Lemos, H., et al., Carbohydrate antigen 125 for mortality risk prediction following acute myocardial infarction, Sci. Rep., 2020, vol. 10, p. 11016. https://doi.org/10.1038/s41598-020-67548-8
Fisher, D.A.C., Miner, C.A., Engle, E.K., Hu, H., Collins, T.B., Zhou, A., et al., Cytokine production in myelofibrosis exhibits differential responsiveness to JAK-STAT, MAP kinase, and NF-κB signaling, Leukemia, 2019, vol. 33, pp. 1978–1995. https://doi.org/10.1038/s41375-019-0379-y
Gungor, T., Kanat-Pektas, M., Sucak, A., and Mollamahmutoglu, L., The role of thrombocytosis in prognostic evaluation of epithelial ovarian tumors, Arch. Gynecol. Obstet., 2009, vol. 279, pp. 53–56. https://doi.org/10.1007/s00404-008-0673-9
Hjelmeland, A.B., Wu, Q., Wickman, S., Eyler, C., Heddleston, J., Shi, Q., et al., Targeting A20 decreases glioma stem cell survival and tumor growth, PLoS Biol., 2010, vol. 8, p. e1000319. https://doi.org/10.1371/journal.pbio.1000319
Hoermann, G., Greiner, G., and Valent, P., Cytokine Regulation of Microenvironmental Cells in Myeloproliferative Neoplasms, Mediators Inflammation, 2015, p. 869242. https://doi.org/10.1155/2015/869242
Jenner, M.W., Leone, P.E., Walker, B.A., Ross, F.M., Johnson, D.C., Gonzalez, D., et al., Gene mapping and expression analysis of 16q loss of heterozygosity identifies WWOX and CYLD as being important in determining clinical outcome in multiple myeloma, Blood, 2007, vol. 110, pp. 3291–3300. https://doi.org/10.1182/blood-2007-02-075069
Jin, W., Reiley, W.R., Lee, A.J., Wright, A., Wu, X., Zhang, M., et al., Deubiquitinating enzyme CYLD regulates the peripheral development and naive phenotype maintenance of B cells, J. Biol. Chem., 2007, vol. 282, pp. 15884–15893. https://doi.org/10.1074/jbc.M609952200
Kato, M., Sanada, M., Kato, I., Sato, Y., Takita, J., Takeuchi, K., et al., Frequent inactivation of A20 in B-cell lymphomas, Nature, 2009, vol. 459, pp. 712–716. https://doi.org/10.1038/nature07969
Kota, J., Caceres, N., and Constantinescu, S.N., Aberrant signal transduction pathways in myeloproliferative neoplasms, Leukemia, 2008, vol. 22, pp. 1828–1840. https://doi.org/10.1038/leu.2008.236
Li, Q., Zhang, L., Ma, L., Bai, X., Li, X., Zhao, M., et al., Resveratrol inhibits STAT5 activation through the induction of SHP-1 and SHP-2 tyrosine phosphatases in chronic myelogenous leukemia cells, Anti-Cancer Drugs, 2018, vol. 29, pp. 646–651. https://doi.org/10.1097/CAD.0000000000000635
Li, X., Pang, J., Xue, W., Wang, Y., Tian, T., Elgehama A., et al., Inducible SHP-2 activation confers resistance to imatinib in drug-tolerant chronic myeloid leukemia cells, Toxicol. Appl. Pharmacol., 2018, vol. 360, pp. 249–256. https://doi.org/10.1016/j.taap.2018.09.044
Liu, J., Wang, Y., Sun, X., Ji, N., Sun, S., Wang, Y., et al., Promoter methylation attenuates SHP1 expression and function in patients with primary central nervous system lymphoma, Oncol. Rep., 2017, vol. 37, pp. 887–894. https://doi.org/10.3892/or.2016.5308
Liu, J., Zheng, Y., Gao, J., Zhu, G., Gao, K., Zhang, W., et al., Expression of SHP-1 and SOCS6 in patients with acute leukemia and their clinical implication, OncoTargets Ther., 2017, vol. 10, pp. 1915–1920. https://doi.org/10.2147/OTT.S131537
Lorenz, U., SHP-1 and SHP-2 in T cells: two phosphatases functioning at many levels, Immunol.
Maroun, C.R., Naujokas, M.A., Holgado-Madruga, M., Wong, A.J., and Park, M., The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase, Mol. Cell. Biol., 2000, vol. 20, pp. 8513–8525. https://doi.org/10.1128/MCB.20.22.8513-8525.2000
Masselli, E., Pozzi, G., Gobbi, G., Merighi, S., Gessi, S., Vitale, M., et al., Cytokine profiling in myeloproliferative neoplasms: overview on phenotype correlation, outcome prediction, and role of genetic variants, Cells, 2020, vol 9. https://doi.org/10.3390/cells9092136
Moutsianas, L., Enciso-Mora, V., Ma, Y.P., Leslie, S., Dilthey, A., Broderick, P., et al., Multiple Hodgkin lymphoma–associated loci within the HLA region at chromosome 6p21.3, Blood, 2011, vol. 118, pp. 670–674. https://doi.org/10.1182/blood-2011-03-339630
Nishanth, G., Deckert, M., Wex, K., Massoumi, R., Schweitzer, K., Naumann, M., et al., CYLD enhances severe listeriosis by impairing IL-6/STAT3-dependent fibrin production, PLoS Pathogens, 2013, vol. 9, p. e1003455. https://doi.org/10.1371/journal.ppat.1003455
Nunez-Marrero, A., Arroyo, N., Godoy, L., Rahman, M.Z., Matta, J.L., and Dutil, J., SNPs in the interleukin-12 signaling pathway are associated with breast cancer risk in Puerto Rican women, Oncotarget, 2020, vol. 11, pp. 3420–3431. https://doi.org/10.18632/oncotarget.27707
O’Sullivan, J. and Mead, A.J., Heterogeneity in myeloproliferative neoplasms: Causes and consequences, Adv. Biol. Regul., 2019, vol. 71, pp. 55–68. https://doi.org/10.1016/j.jbior.2018.11.007
Pandey, R., Saxena, M., and Kapur, R., Role of SHP2 in hematopoiesis and leukemogenesis, Curr. Opin. Hematol., 2017, vol. 24, pp. 307–313. https://doi.org/10.1097/MOH.0000000000000345
Reiley, W.W., Zhang, M., Jin, W., Losiewicz, M., Donohue, K.B., Norbury, C.C., et al., Regulation of T cell development by the deubiquitinating enzyme CYLD, Nat. Immunol., 2006, vol. 7, pp. 411–417. https://doi.org/10.1038/ni1315
Skov, V., Riley, C.H., Thomassen, M., Kjaer, L., Stauffer Larsen, T., Bjerrum, O.W., et al., The impact of interferon-alpha2 on HLA genes in patients with polycythemia vera and related neoplasms, Leukemia Lymphoma, 2017, vol. 58, pp. 1914–1921. https://doi.org/10.1080/10428194.2016.1262032
Smith, A.G., Fan, W., Regen, L., Warnock, S., Sprague, M., Williams, R., et al., Somatic mutations in the HLA genes of patients with hematological malignancy, Tissue Antigens, 2012, vol. 79, pp. 359–366. https://doi.org/10.1111/j.1399-0039.2012.01868
Szybinski, J. and Meyer, S.C., Genetics of Myeloproliferative Neoplasms, Hematol./Oncol. Clin. North Am., 2021, vol. 35, pp. 217–236. https://doi.org/10.1016/j.hoc.2020.12.002
Tajan, M., de Rocca Serra, A., Valet, P., Edouard, T., and Yart, A., SHP2 sails from physiology to pathology, Eur. J. Med. Genet., 2015, vol. 58, pp. 509–525. https://doi.org/10.1016/j.ejmg.2015.08.005
Tefferi, A., Vaidya, R., Caramazza, D., Finke, C., Lasho, T., and Pardanani, A., Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study, J. Clin. Oncol., 2011, vol. 29, pp. 1356–1363. https://doi.org/10.1200/JCO.2010.32.9490
Tefferi, A. and Barbui, T., Polycythemia vera and essential thrombocythemia: 2021 update on diagnosis, risk-stratification and management, Am. J. Hematol., 2020, vol. 95, pp. 1599–1613. https://doi.org/10.1002/ajh.26008
Teofili, L., Martini, M., Cenci, T., Petrucci, G., Torti, L., Storti, S., et al., Different STAT-3 and STAT-5 phosphorylation discriminates among Ph-negative chronic myeloproliferative diseases and is independent of the V617F JAK-2 mutation, Blood, 2007, vol. 110, pp. 354–359. https://doi.org/10.1182/blood-2007-01-069237
Vainchenker, W. and Kralovics, R., Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms, Blood, 2017, vol. 129, pp. 667–679. https://doi.org/10.1182/blood-2016-10-695940
Vijai, J., Kirchhoff, T., Schrader, K.A., Brown, J., Dutra-Clarke, A.V., Manschreck, C., et al., Susceptibility loci associated with specific and shared subtypes of lymphoid malignancies, PLoS Genet., 2013, vol. 9, p. e1003220. https://doi.org/10.1371/journal.pgen.1003220
Wang, Y., Wan, M., Zhou, Q., Wang, H., Wang, Z., Zhong, X., et al., The Prognostic Role of SOCS3 and A20 in Human Cholangiocarcinoma, PloS One, 2015, vol. 10, p. e0141165. https://doi.org/10.1371/journal.pone.0141165
Wu, W., Zhu, H., Fu, Y., Shen, W., Xu, J., Miao, K., et al., Clinical significance of down-regulated cylindromatosis gene in chronic lymphocytic leukemia, Leukemia Lymphoma, 2014, vol. 55, pp. 588–594. https://doi.org/10.3109/10428194.2013.809077
Zhong, C., Cozen, W., Bolanos, R., Song, J., and Wang, S., The role of HLA variation in lymphoma aetiology and survival, J. Intern. Med., 2019, vol. 286, pp. 154–180. https://doi.org/10.1111/joim.12911
Zhu, L., Zhang, F., Shen, Q., Chen, S., Wang, X., Wang, L., et al., Characteristics of A20 gene polymorphisms in T-cell acute lymphocytic leukemia, Hematology, 2014, vol. 19, pp. 448–454. https://doi.org/10.1179/1607845414Y.0000000160