Цитологія і генетика 2025, том 59, № 4, 65-76
Cytology and Genetics 2025, том 59, № 4, 388–396, doi: https://www.doi.org/10.3103/S0095452725040048

Інтегровані прояви клітинного стресу як тригер пухлинної прогресії

Чехун В.Ф., Лук’янова Н.Ю., Кунська Л.М., Налєскіна Л.А.

  • Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України, вул. Васильківська, 45, Київ, 03022, Україна

В останні десятиріччя зусилля фахівців з різних галузей медицини спрямовані на визначення ролі стресу у виникненні раку та подальшій пухлинній прогресії за рахунок інвазивно-міграційного розповсюдження злоякісно трансформованих клітин та утворення метастазів. Лише суб’єктивних стверджень про існування зв’язку між розвитком злоякісного процесу та дією факторів, які здатні викликати злоякісну трансформацію клітин, недостатньо. На сьогодні доказовими визнані результати досліджень, які отримані в експериментах in vitro та in vivo, або підтверджені численними клінічними спостереженнями ex vivo. В огляді літератури порушені питання щодо проявів стресу на клітинному рівні, який розглядається як тригер пухлинної прогресії. Показано, що клітинний стрес це широкий діапазон внутрішньоклітинних структурно-функціональних змін та молекулярних перебудов, які відбуваються у клітинах у відповідь на стресові фактори навколишнього середовища, включно механічні пошкодження, екстремальні температури, вплив травми, гіпоксії, окислювального стресу, а також деяких вірусних інфекцій. Охарактеризовані механізми, за якими внутрішньоклітинні порушення, сприяють злоякісному росту, прогресії різних за гістогенезом новоутворень. Зокрема, це пошкодження ДНК, утворення розгорнутого білка, мітохондріального сигнального стресу, стресу ендоплазматичного ретикулуму, проліферації або елімінації пошкоджених клітин. Показано, що клітини можуть реагувати на стрес різними способами, починаючи від активації шляхів виживання до ініціації клітинної смерті. Таким чином, структурно-функціональні та молекулярно-біологічні зміни на клітинному та субклітинному рівнях, що відбуваються внаслідок клітинного стресу, необхідно, з одного боку, враховувати як можливі мішені при розробці методів таргетної хіміотерапії, з іншого – при плануванні засобів профілактики виникнення злоякісних новоутворень.

Ключові слова: клітинний стрес, стресорні фактори, внутрішньоклітинні органели, структурно-функціональні порушення, канцерогенез, проліферація, інвазія, метастазування, апоптоз

Цитологія і генетика
2025, том 59, № 4, 65-76

Current Issue
Cytology and Genetics
2025, том 59, № 4, 388–396,
doi: 10.3103/S0095452725040048

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

Abrisch, R.G., Gumbin, S.C., Wisniewski, B.T., Lackner, L.L., and Voeltz, G.K., Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology, J. Cell Biol., 2020, vol. 219. https://doi.org/10.1083/jcb.201911122

Almanza, A., Carlesso, A., Chintha C., et al., Endoplasmic reticulum stress signalling—From basic mechanisms to clinical applications, FEBS J., 2018. https://doi.org/10.1111/febs.14608

An, G., Park, J., Song, J., et al., Relevance of the endoplasmic reticulum-mitochondria axis in cancer diagnosis and therapy, Exp. Mol. Med., 2024, vol. 56, pp. 40–50. https://doi.org/10.1038/s12276-023-01137-3

Antonangeli, F., Grimsholm, O., Rossi, M.N., and Velotti, F., Editorial: Cellular stress and inflammation: how the immune system drives tissue homeostasis, Front. Immunol., 2021, vol. 12, p. 668876. https://doi.org/10.3389/fimmu.2021.668876

Bottone, M.G., Santin, G., Aredia, F., et al., Morphological features of organelles during apoptosis: An overview, Cells, 2013, vol. 2, pp. 294–305. https://doi.org/10.3390/cells2020294

Cai, W., Sun, X., Jin, F., Xiao, D., Li, H., Sun, H., et al., PERK-eIF2α-ERK1/2 axis drives mesenchymal-endothelial transition of cancer-associated fibroblasts in pancreatic cancer, Cancer Lett., 2021, vol. 515, pp. 86–95. https://doi.org/10.1016/j.canlet.2021.05.021

Chen, X. and Cubillos-Ruiz, J.R., Endoplasmic reticulum stress signals in the tumour and its microenvironment, Nat. Rev. Cancer, 2021, vol. 21, pp. 71–88. https://doi.org/10.1038/s41568-020-00312-2

Cortesi, M., Rossino, G., Chakrabarty, A., and Rossi, D., Tumor adaptation to cellular stresses: Mechanisms, biomarkers and therapeutic opportunities, Front. Med., 2023, vol. 10, p. 1268976. https://doi.org/10.3389/fmed.2023.1268976

Denais, C.M., Gilbert, R.M., Isermann, P., et al., Nuclear envelope rupture and repair during cancer cell migration, Science, 2016, vol. 352, pp. 353–358. https://doi.org/10.1126/science.aad7297

DuFort, Ch.,C., Paszek, M.J., and Weaver, V.M., Balancing forces: architectural control of mechanotransduction, Nat. Rev. Mol. Cell. Biol., 2011, vol. 12, pp. 308–319. https://doi.org/10.1038/nrm3112

Fan, F., Liu, F., Shen, P., Tao, L., Zhang, H., and Wu., H., Salvianolic acid B, a new type I IRE1 kinase inhibitor, abrogates AngII-induced angiogenesis by interacting with IRE1 in its active conformation, Clin. Exp. Pharmacol. Physiol., 2023, vol. 50, pp. 82–95. https://doi.org/10.1111/1440-1681.13726

Farhad, H.A., An overview of Stress in cellular and molecular levels and the importance of studying responses to stresses in biology, Res. J. Biotechnol., 2021, vol. 16, pp. 258–282.

Fernandez, M.K., Sinha, M., Zidan, M., and Renz, M., Nuclear actin filaments – A historical perspective, Nucleus, 2024, vol. 15, p. 2320656. https://doi.org/10.1080/19491034.2024.2320656

Fu, Y., Zou, T., and Shen, X., Lipid metabolism in cancer progression and therapeutic strategies, MedComm, 2020, vol. 2, pp. 27–59. https://doi.org/10.1002/mco2.27

Fulda, S., Gorman, A.M., Hori, O., and Samali, A., Cellular stress responses: Cell survival and cell death, Cell Bio-l., 2010. https://doi.org/10.1155/2010/214074

Gao, Z.W., Wang, H.P., Lin, F., Wang, X., Long, M., Zhang, H.Z. and Dong, K., CD73 promotes proliferation and migration of human cervical cancer cells independent of its enzyme activity, BMC Cancer, 2017, vol. 17, pp. 1–8. https://doi.org/10.1186/s12885-017-3128-5

Gruber, L., Jobst, M., Kiss, E., et al., Intracellular remodeling associated with endoplasmic reticulum stress modifies biomechanical compliance of bladder cells, Cell Commun. Signal., 2023, vol. 21, p. 307. https://doi.org/10.1186/s12964-023-01295-x

Halász, H., Szatmári, Z., Kovács, K., et al., Changes of ex vivo cervical epithelial cells due to electroporation with JMY, Int. J. Mol. Sci., 2023, vol. 24, p. 16863. https://doi.org/10.3390/ijms242316863

Harry, J.A. and Ormiston, M.L., Novel pathways for targeting tumor angiogenesis in metastatic breast cancer, Front. Oncol., 2021, vol. 11, p. 772305. https://doi.org/10.3389/fonc.2021.772305

Heo, S.-J., Driscoll, T.P., Thorpe, S.D., et al., Differentiation alters stem cell nuclear architecture, mechanics, and mechano-sensitivity, Elife, 2016, vol. 30, p. e18207. https://doi.org/10.7554/eLife.18207

Hochberg-Laufer, H., Schwed-Gross, A., Neugebauer, K.M., and Shav-Tal, Ya., Uncoupling of nucleo-cytoplasmic RNA export and localization during stress, Nucleic Acids Res., 2019, vol. 47, pp. 4778–4797. https://doi.org/10.1093/nar/gkz168

Iqbal, M.J., Kabeer, A., Abbas, Z., et al., Interplay of oxidative stress, cellular communication and signaling pathways in cancer, Cell Commun. Signal., 2024, vol. 22, pp. 1–16. https://doi.org/10.1186/s12964-023-01398-5

Isah, T., Stress and defense responses in plant secondary metabolites production, Biol. Res., 2019, vol. 52, p. 39. https://doi.org/10.1186/s40659-019-0246-3

Jaecker, F.F., Almeida, J.A., Krull, C.M., et al., Nucleoli in epithelial cell collectives respond to tumorigenic, spatial, and mechanical cues, Mol. Biol. Cell, 2022, vol. 33. https://doi.org/10.1091/mbc.E22-02-0070

Jin, Y., Tan, Y., Wu, J., and Ren, Z., Lipid droplets: A cellular organelle vital in cancer cells, Cell Death Discovery, 2023, vol. 9, p. 254.

Katona, M., Bartók, Á., Nichtova, Z., et al., Capture at the ER-mitochondrial contacts licenses IP(3) receptors to stimulate local Ca2+ transfer and oxidative metabolism, Nat. Commun., 2022, vol. 13, p. 6779. https://doi.org/10.1038/s41467-022-34365-8

Kim, K.H. and Lee, Ch.B., Socialized mitochondria: mitonuclear crosstalk in stress, Exp. Mol. Med., 2024, vol. 56, pp. 1033–1042. https://doi.org/10.1038/s12276-024-01211-4

Kim, T., Han, S., Chun, Y., Yang, H., Min, H., Jeon, S.Y., Kim, J., Moon, H.-G., and Lee, D., Comparative characterization of 3D chromatin organization in triple-negative breast cancers, Exp. Mol. Med., 2022, vol. 54, pp. 585–600. https://doi.org/10.1038/s12276-022-00768-2

Lafontaine, D.L.J., Riback, J.A., Bascetin, R., and Brangwynne, C.P., The nucleolus as a multiphase liquid condensate, Nat. Rev. Mol. Cell. Biol., 2021, vol. 22, pp. 165–182. https://doi.org/10.1038/s41580-020-0272-6

Latonen, L., Phase-to-phase with nucleoli - stress responses, protein aggregation and novel roles of RNA, Front. Cell. Neurosci., 2019, vol. 26, p. 151. https://doi.org/10.3389/fncel.2019.00151

Lechuga, S. and Ivanov, A.I., Actin cytoskeleton dynamics during mucosal inflammation: A view from broken epithelial barriers, Curr. Opin. Physiol., 2021, vol. 19, pp. 10–16. https://doi.org/10.1016/j.cophys.2020.06.012

Lewinska, A., Bednarz, D., Adamczyk-Grochala J., and Wnuk, M., Phytochemical-induced nucleolar stress results in the inhibition of breast cancer cell proliferation, Redox Biol., 2017, vol. 12, pp. 469–482. https://doi.org/10.1016/j.redox.2017.03.014

Limia, C.M., Sauzay, C., Urra, H., et al., Emerging roles of the endoplasmic reticulum associated unfolded protein response in cancer cell migration and invasion, Cancers, 2019, vol. 11, p. 631. https://doi.org/10.3390/cancers11050631

Lindström, M.S., Jurada, D., Bursac, S., Orsolic, I., Bartek, J., and Volarevic, S., Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis, Oncogene, 2018, vol. 37, pp. 2351–2366. https://doi.org/10.1038/s41388-017-0121-z

Liu, J. and Add, Y.A., Tools to dissect lipid droplet regulation, players, and mechanisms, ACS Chem. Biol., 2025, vol. 20, pp. 539–552. https://doi.org/10.1021/acschembio.4c00835

Liu, X., Zhang X., Zhao, L., Long, J., Feng, Z., Su, J., Gao, F., and Liu, J., Mitochondria as a sensor, a central hub and a biological clock in psychological stress-accelerated aging, Ageing. Res. Rev., 2024, vol. 93, p. 102145. https://doi.org/10.1016/j.arr.2023.102145

Lu, H., Wang, X., Li, M., Ji, D., Liang, D., Liang, C., Liu, Y., Zhang, Z., Cao, Y., and Zou, W., Mitochondrial unfolded protein response and integrated stress response as promising therapeutic targets for mitochondrial diseases, Cells, 2022, vol. 12, p. 20. https://doi.org/10.3390/cells12010020

Maeshima, K., Iida, S., and Tamura, S., Physical Nature of Chromatin in the Nucleus, Cold Spring Harbor Perspect. Med., 2021, vol. 13, p. a040675. https://doi.org/10.1101/cshperspect.a040675

Miller, B., Kim, S.J., Kumagai, H., Yen, K., and Cohen, P., Mitochondria-derived peptides in aging and healthspan, J. Clin. Invest., 2022, vol. 132, p. e158449. https://doi.org/10.1172/JCI158449

Molines, A.T., Lemiere, J., Goshima, G., and Chang, F., Effect of cytoplasm concentration on cytoskeleton dynamics, Biophys. J., 2010, vol. 118, p. 351a. https://doi.org/10.1016/j.bpj.2019.11.2022

Nakagawa, K., Lokugamage, G., and Makino, S., Viral and cellular mRNA translation in coronavirus-infected cells, Adv. Virus Res. Coronaviruses, 2016, vol. 96, pp. 165–192. https://doi.org/10.1016/bs.aivir.2016.08.001

Nie, Zh., Chen, M., Wen, X., et al., Endoplasmic reticulum stress and tumor microenvironment in bladder cancer: the missing link, Front. Cell Dev. Biol., 2021, vol. 9. https://doi.org/10.3389/fcell.2021.683940

Northcott, J.M., Dean, I.S., Mouw, J.K., and Weaver, V.M., Feeling stress: the mechanics of cancer progression and aggression, Front. Cell Dev. Biol., 2018, vol. 6. https://doi.org/10.3389/fcell.2018.00017

Obr, A.E., Kumar, S., Chang, Y-J., Bulatowicz, J.J., Barnes, B.J., Birge, R.B., Lazzarino, D.A., Gallagher, E., LeRoith, D., and Wood, T.L., Insulin-like growth factor receptor signaling in breast tumor epithelium protects cells from endoplasmic reticulum stress and regulates the tumor microenvironment, Breast Cancer Res., 2018, vol. 20, p. 138. https://breast-cancer-research.biomedcentral.com/articles/10.1186/ s13058-018-1063-2.

Orsolic, I., Jurada, D., Pullen, N., et al., The relationship between the nucleolus and cancer: Current evidence and emerging paradigms, Semin. Cancer Biol., 2016, vol. 37, pp. 36–50. https://doi.org/10.1016/j.semcancer.2015.12.004

Palumbieri, M.D., Merigliano, C., Gonzalez-Acosta, D., et al., Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity, Nat. Commun., 2023, vol. 14, p. 7819. https://doi.org/10.1038/s41467-023-43183-5

Panas, M.D., Ivanov, P., and Anderson, P., Mechanistic insights into mammalian stress granule dynamics, J. Cell. Biol., 2016, vol. 215, pp. 313–323. https://doi.org/10.1083/jcb.201609081

Pérez-Domínguez, S., Kulkarni, S.G., Pabijan, J., et al., Reliable, standardized measurements for cell mechanical properties, Nanoscale, 2023, vol. 15, pp. 16371–16380. https://doi.org/10.1039/d3nr02034g

Pianese, G., Beitrag zur Histologie und Aetiologie des Carcinoms, Jena: G. Fischer, 1896. https://wellcomecollection.org/works/wb835qxp.

Poljšak, B. and Milisav, I., Clinical implications of cellular stress responses, Bosnian J. Basic Med. Sci., 2012, vol. 12, pp. 122–126. https://doi.org/10.17305/bjbms.2012.2510

Prasad, M., Walker, A.N., Kaur, J., et al., Endoplasmic reticulum stress enhances mitochondrial metabolic activity in mammalian adrenals and gonads, Mol. Cell Biol., 2016, vol. 36, pp. 3058–3074. https://doi.org/10.1128/MCB.00411-16

Pundel, O.J., Blowes, L.M., and Connelly, J.T., Extracellular adhesive cues physically define nucleolar structure and function, Adv. Sci., 2022, vol. 9, p. e2105545. https://doi.org/10.1002/advs.202105545

Reineke, L.C., Cheema, S.A., Dubrulle, J., and Neilson, J.R., Chronic starvation induces noncanonical pro-death stress granules, J. Cell Sci., 2018, vol. 131, p. jcs220244. https://doi.org/10.1242/jcs.220244

Sakaguchi, M., Kitaguchi, D., Morinami, S., Kurashiki, Y., Hashida, H., Miyata, S., Yamaguchi, M., Sakai, M., Murata, N., and Tanaka, S., Berberine-induced nucleolar stress response in a human breast cancer cell line, Biochem. Biophys. Res. Commun., 2020, vol. 528, pp. 227–233. https://doi.org/10.1016/j.bbrc.2020.05.020

Schneider, E., Rissiek, A., Winzer, R., Puig, B., Rissiek, B., Haag, F., Mittrücker, H.W., Magnus, T., and Tolosa, E., Generation and function of non-cell-bound CD73 in inflammation, Front. Immunol., 2019, vol. 10, p. 1729. https://doi.org/10.3389/fimmu.2019.01729

Sehgal, P. and Chaturvedi, P., Chromatin and cancer: implications of disrupted chromatin organization in tumorigenesis and its diversification, Cancers, 2023, vol. 15, p. 466. https://doi.org/10.3390/cancers15020466

Sekine, Y., Houston, R., and Sekine, S., Cellular metabolic stress responses via organelles, Exp. Cell Res., 2021, vol. 400, p. 112515. https://doi.org/10.1016/j.yexcr.2021.112515

Siklos, M. and Kubicek, S., Therapeutic targeting of chromatin: status and opportunities, FEBS J., 2022, vol. 289, pp. 1276–1301. https://doi.org/10.1111/febs.15966

Stephens, P.J., Greenman, C.D., Fu, B., et al., Massive genomic rearrangement acquired in a single catastrophic event during cancer development, Cell, 2011, vol. 144, pp. 27–40. https://doi.org/10.1016/j.cell.2010.11.055

Stephens A.D., Liu, P.Z., Kandula, W., et al., Physicochemical mechanotransduction alters nuclear shape and mechanics via heterochromatin formation, Mol. Biol. Cell, 2019, vol. 30, pp. 2320–2330. https://doi.org/10.1091/mbc.E19-05-0286

Strom, A.R., Biggs, R.J., Banigan, E.J., Wang, X., Chiu, K., Herman, C., Collado, J., Yue, F., Politz, J.C.R., Tait, L.J., et al., Hp1α is a chromatin crosslinker that controls nuclear and mitotic chromosome mechanics, Elife, 2021, vol. 10, pp. 1–30. https://doi.org/10.7554/eLife.63972

Terzoudi, G.I., Karakosta, M., Pantelias, A., et al., Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis, Mutat. Res., Genet. Toxicol. Environ. Mutagen., 2015, vol. 793, pp. 185–198. https://doi.org/10.1016/j.mrgentox.2015.07.014

Vilarrasa-Blasi, R., Soler-Vila, P., Verdaguer-Dot, N., Russiñol N., Di Stefano, M., Chapaprieta, V., Clot, G., Farabella, I., Cuscó, P., Kulis, M., et al., Dynamics of genome architecture and chromatin function during human B cell differentiation and neoplastic transformation, Nat. Commun., 2021, vol. 12, p. 651. https://doi.org/10.1038/s41467-020-20849-y

Wang, A., Kolhe, J.A., Gioacchini, N., et al., Mechanism of long-range chromosome motion triggered by gene activation, Dev. Cell, 2020, vol. 52, pp. 309–320. https://doi.org/10.1016/j.devcel.2019.12.007

Wang, F., Zhang, D., Zhang, D., Li, P., and Gao, Y., Mitochondrial protein translation: emerging roles and clinical significance in disease, Front. Cell. Dev. Biol., 2021, vol. 9, p. 675465. https://doi.org/10.3389/fcell.2021.675465

Wang, Z.-H., Chen, L., Li, W., et al., Mitochondria transfer and transplantation in human health and diseases, Mitochondrion, 2022, vol. 65, pp. 80–87. https://doi.org/10.1016/j.mito.2022.05.002

Weeks, S.E., Metge, B.J., and Samant, R.S., The nucleolus: a central response hub for the stressors that drive cancer progression, Cell. Mol. Life Sci., 2019, vol. 76, pp. 4511–4524. https://doi.org/10.1007/s00018-019-03231-0

Wei, M., Fan, X., Ding, M., et al., Nuclear actin regulates inducible transcription by enhancing RNA polymerase II clustering, Sci. Adv., 2020, vol. 6, p. eaay6515. https://doi.org/10.1126/sciadv.aay6515

Welch, W.I. and Suhan, J.P., Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment, J. Cell Biol., 1985, vol. 101, pp. 1198–1211. https://doi.org/10.1083/jcb.101.4.1198

Wu, H., Chen, W., Chen, Z., Li, X., and Wang, M., Novel tumor therapy strategies targeting endoplasmic reticulum-mitochondria signal pathways, Ageing Res. Rev., 2023, vol. 88, p. 101951. https://doi.org/10.1016/j.arr.2023.101951

Zarrella, S., Miranda, M.R., Covelli, V., Restivo, I., Novi, S., Pepe, G., Tesoriere, L., Rodriquez, M., Bertamino, A., Campiglia, P., Tecce, M.F., and Vestuto, V., Endoplasmic reticulum stress and its role in metabolic reprogramming of cancer, Metabolites, 2025, vol. 15, p. 221. https://doi.org/10.3390/metabo15040221

Zhang, Y.-G., Niu, J.-T., Wu, H.-W., et al., Actin-binding proteins as potential biomarkers for chronic inflammation-induced cancer diagnosis and therapy, Anal. Cell. Pathol., 2021 vol. 2021, p. 6692811. https://doi.org/10.1155/2021/6692811

Zhang, Y., Yao, J., Zhang, M., Wang, Y. and Shi, X., Mitochondria-associated endoplasmic reticulum membranes (MAMs): Possible therapeutic targets in heart failure, Front. Cardiovasc. Med., 2023, vol. 10. https://doi.org/10.3389/fcvm.2023.1083935

Zhang, W., Shi, Yi., Oyang, L., et al., Endoplasmic reticulum stress-a key guardian in cancer, Cell Death Discovery, 2024, vol. 10, p. 343. https://doi.org/10.1038/s41420-024-02110-3