Цитологія і генетика 2025, том 59, № 5, 41-60
Cytology and Genetics 2025, том 59, № 5, 476–494, doi: https://www.doi.org/10.3103/S0095452725050056

Визначення ефекторів бактеріального FtsZ білку, спрямованих на взаємодію із сайтами зв’язування похідних кумаринового ряду

Карпов П.А., Ожерєдов Д.С., Ожерєдов С.П., Демчук О.М., Співак С.І., Блюм Я.Б.

  • Державна установа «Інститут харчової біотехнології та геноміки НАН України», вул. Байди­Вишневецького, 2А, Київ, 04123, Україна

Існують численні інгібітори бактеріального FtsZ білка, біологічна активність яких доведена біохімічно, проте цільові сайти ліганд-білкової взаємодії для біль-шості з них залишаються невідомими. Це ускладнює подальший комбінаторний дизайн і у актуальному дослідженні нами представлено результати пошуку ефекторів сайтів зв’язування 4-гідроксікумарину (BP1 і BP2). Представлені дані ґрунтуються на результатах фармакофорного скринінгу, хемоінформаційної кластеризації, молекулярному докінгу, симуляціях молекулярної динаміки, методах штучного інтелекту, тощо. Цільовою групою була об’єднана бібліотека з 379 речовин, яка сформована за результатами ревізії структурної бази даних RCSB Protein Data Bank і речовин з бази даних ChEMBL, для яких біохімічно доведена взаємодія з FtsZ. За результатами комплексного дослідження відібрано 39 сполук, з яких 28 ідентифіковані як ефектори сайтів BP1 і BP2, а ще 11 як специфічні ефектори сайту BP2, розташованого у суперкишені BP2/IDC.

Ключові слова: FtsZ, BP1, BP2, кумарини, ліганд-білкова взаємодія, хемоінформатика, фармакофорний пошук, молекулярний докінг, штучний інтелект

Цитологія і генетика
2025, том 59, № 5, 41-60

Current Issue
Cytology and Genetics
2025, том 59, № 5, 476–494,
doi: 10.3103/S0095452725050056

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

Abraham, M., Alekseenko, A., Basov, V., et al., GROMACS 2024.5, Manual, 2024. https://doi.org/10.5281/zenodo.14732060

Abramson, J., Adler, J., Dunger, J., et al., Addendum: Accurate structure prediction of biomolecular interactions with AlphaFold 3, Nature, 2024, vol. 636, no. 8042, p. E4. https://doi.org/10.1038/s41586-024-08416-7

Alnami, A., Norton, R.S., et al., Conformational flexibility of a highly conserved helix controls cryptic pocket formation in FtsZ, J. Mol. Biol., 2021, vol. 433, no. 15, p. 167061. https://doi.org/10.1016/j.jmb.2021.167061

Andreu, J.M., Huecas, S., Araújo-Bazán, L., et al., The search for antibacterial inhibitors targeting cell division protein FtsZ at its nucleotide and allosteric binding sites, Biomedicines, 2022, vol. 10, no. 8, p. 1825. https://doi.org/10.3390/biomedicines10081825

Bellaver, E.H., da Costa, I.M., Redin, E.E., et al., The fermented milk can be a natural ally against obesity? Investigation of Bovine Milk Fermentation by Lacticaseibacillus casei LBC 237, Screening, and In Silico predictions of bioactive peptides for obesity control, Intell. Pharm., 2024, vol. 2, pp. 467–484. https://doi.org/10.1016/j.ipha.2024.05.009

Berman, H., Henrick, K., and Nakamura, H., Announcing the worldwide Protein Data Bank, Nat. Struct. Biol., 2003, vol. 10, no. 12, p. 980. https://doi.org/10.1038/nsb1203-980

Burley, S.K., Bhatt, R., Bhikadiya, C., et al., Updated resources for exploring experimentally-determined PDB structures and Computed Structure Models at the RCSB Protein Data Bank, Nucleic Acids Res., 2025, vol. 53, no. D1, pp. D564–D574. https://doi.org/10.1093/nar/gkae1091

Bye, A. and King, H.K., The biosynthesis of 4-hydroxycoumarin and dicoumarol by Aspergillus fumigatus Fresenius, Biochem J., 1970, vol. 117, no. 2, pp. 237–245. https://doi.org/10.1042/bj1170237

ByteDance AML AI4Science Team, Xinshi Chen, Yuxuan Zhang, et al., Protenix – Advancing structure prediction through a comprehensive AlphaFold3 reproduction, bioRxiv, 2025, 01.08.631967. https://doi.org/10.1101/2025.01.08.631967

Chiang, C.C., Cheng, M.J., Peng, C.F., et al., A novel dimeric coumarin analog and antimycobacterial constituents from Fatoua pilosa, Chem. Biodiversity, 2010, vol. 7, no. 7, pp. 1728–1736. https://doi.org/10.1002/cbdv.200900326

Crunkhorn, S., Identifying novel antibiotic targets, Nature reviews, Drug Discovery, 2025, vol. 24, no. 5, p. 334. https://doi.org/10.1038/d41573-025-00059-1

Duggirala, S., Nankar, R. P., Rajendran, S., et al., Phytochemicals as inhibitors of bacterial cell division protein FtsZ: coumarins are promising candidates, Appl. Biochem. Biotechnol., 2014, vol. 174, no. 1, pp. 283–296. https://doi.org/10.1007/s12010-014-1056-2

Dyer, N., Tubulin and its prokaryotic homologue FtsZ: a structural and functional comparison, Sci. Progr., 2009, vol. 92, pt. 2, pp. 113–137. https://doi.org/10.3184/003685009X461431

Egieyeh, S., Syce, J., Christoffels, A., et al., Exploration of scaffolds from natural products with antiplasmodial activities, currently registered antimalarial drugs and public malarial screen data, Molecules, 2016, vol. 21, no. 1, p. 104. https://doi.org/10.3390/molecules21010104

Elfmann, C. and Stülke, J., PAE viewer: a webserver for the interactive visualization of the predicted aligned error for multimer structure predictions and crosslinks, Nucleic Acids Res., 2023, vol. 51, no. W1, pp. W404–W410. https://doi.org/10.1093/nar/gkad350

Faguy, D.M. and Doolittle, W.F., Cytoskeletal proteins: The evolution of cell division, Curr. Biol., 1998, vol. 8, no. 10, pp. R338–R341. https://doi.org/10.1016/s0960-9822(98)70216-7

Gruber, K., Steinkellner, G., and Gruber C., Determining Novel Enzymatic Functionalities using Three-Dimensional Point Clouds Representing Physico Chemical Properties of Protein Cavities, Application filed by Franzens, K., Universitaet Graz, ACIB, 2015.

Gurnani, M., Rath, P., Chauhan, A., et al., Inhibition of filamentous thermosensitive mutant-Z protein in Bacillus subtilis by cyanobacterial bioactive compounds, Molecules, 2022, vol. 27, no. 6, p. 1907. https://doi.org/10.3390/molecules27061907

Healy, J. and McInnes, L., Uniform manifold approximation and projection, Nat. Rev. Methods Primers, 2024, vol. 4, p. 82. https://doi.org/10.1038/s43586-024-00363-x

Hendlich, M., Rippmann, F., and Barnickel, G., LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins, J. Mol. Graphics Modell., 1997, vol. 15 no. 6, pp. 359–363. https://doi.org/10.1016/s1093-3263(98)00002-3

Hetmann, M., Langner, C., Durmaz, V., et al., Identification and validation of fusidic acid and flufenamic acid as inhibitors of SARS-CoV-2 replication using DrugSolver CavitomiX, Sci. Rep., 2023, vol. 13, no. 1, p. 11783. https://doi.org/10.1038/s41598-023-39071-z

Jones, G., Willett, P., Glen, R.C., et al., Development and validation of a genetic algorithm for flexible docking, J. Mol. Biol., 1997, vol. 267, no. 3, pp. 727–748. https://doi.org/10.1006/jmbi.1996.0897

Karpov, P.A., Ozheriedov, D.S., Ozheredov, S.P., et al., Identification of FtsZ interdomain cleft effectors based on pharmacophore search and molecular docking, Cytol. Genet., 2024, vol. 58, no. 5, pp. 371–384. https://doi.org/10.3103/S0095452724050050

Kleino, I., Frolovaitė, P., Suomi, T., et al., Computational solutions for spatial transcriptomics, Comput. Struct. Biotechnol. J., 2022, vol. 20, pp. 4870–4884. https://doi.org/10.1016/j.csbj.2022.08.043

Laskowski, R.A. and Swindells, M.B., LigPlot+: multiple ligand-protein interaction diagrams for drug discovery, J. Chem. Inf. Model., 2011, vol. 51, no. 10, pp. 2778–2786. https://doi.org/10.1021/ci200227u

Lever, J., Krzywinski, M., and Altman, N., Principal component analysis, Nat. Methods, 2017, vol. 14, pp. 641–642. https://doi.org/10.1038/nmeth.4346

Liu, W., Wu, L., Liu, W., et al., Design, synthesis and biological evaluation of novel coumarin derivatives as multifunctional ligands for the treatment of Alzheimer’s disease, Eur. J. Med. Chem., 2022, vol. 242, p. 114689. https://doi.org/10.1016/j.ejmech.2022.114689

Ma, S. and Ma, S., The development of FtsZ inhibitors as potential antibacterial agents, Chem. Med. Chem., 2012, vol. 7, no. 7, pp. 1161–1172. https://doi.org/10.1002/cmdc.201200156

Mariani, V., Biasini, M., Barbato, A., et al., lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests, Bioinformatics, 2013, vol. 29, no. 21, pp. 2722–2728. https://doi.org/10.1093/bioinformatics/btt473

Matsui, T., Yamane, J., Mogi, N., et al., Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus, Acta Crystallogr., Sect. D:Biol. Crystallogr., 2012, vol. 68, no. 9, pp. 1175–1188. https://doi.org/10.1107/S0907444912022640

Monserrat-Martinez, A., Gambin, Y., and Sierecki, E., Thinking outside the bug: molecular targets and strategies to overcome antibiotic resistance, Int. J. Mol. Sci., 2019, vol. 20, no. 6, p. 1255. https://doi.org/10.3390/ijms20061255

Ozheredov, D.S. and Karpov, P.A., Comparative analysis of allosteric rearrangements in FtsZ protein structure induced by benzamide and 4-hydroxycoumarine compounds, Fakt. Eksp. Evol. Org., 2024, vol. 35, pp. 164–169. https://doi.org/10.7124/FEEO.v35.1679

Ozheriedov, D.S., Ozheredov, S.P., Demchuk, O.M., et al., Ligand-Induced Variability of the FtsZ protein interdomain site pocket, Cytol. Genet., 2024, vol. 58, pp. 275–282. https://doi.org/10.3103/S0095452724040078

Ozheriedov, D.S., Ozheredov, S.P., Demchuk, O.M., Spivak, S.I., Blume, Ya.B., and Karpov, P.A., Dentification of FtsZ protein nucleotide-binding site effectors based on chemoinformatics and structural biological analysis, Cytol. Genet., 2025. vol. 59, no. 4 (in press).

Parigger, L., Krassnigg, A., Hetmann, M., et al., CavitOmiX drug discovery: engineering antivirals with enhanced spectrum and reduced side effects for arboviral diseases, Viruses, 2024, vol. 16, no. 8, p. 1186. https://doi.org/10.3390/v16081186

Pham, P.V., Medical Biotechnology: Techniques and Applications, Chapter 19, in Omics Technologies and Bio-Engineering, Academic, 2019, pp. 449–469. https://doi.org/10.1016/B978-0-12-804659-3.00019-1

Pradhan, P., Margolin, W., and Beuria, T.K., Targeting the achilles heel of FtsZ: The interdomain cleft, Front. Microbiol., 2021, vol. 12, p. 732796. https://doi.org/10.3389/fmicb.2021.732796

Rayevsky, A., Samofalova, D., Ishchenko, L., et al., Structure-based virtual screening and biological evaluation of novel inhibitors of mycobacterium Z-ring formation, J. Cell. Biochem., 2022, vol. 123, no. 5, pp. 852–862. https://doi.org/10.1002/jcb.30232

Sander, T., Freyss, J., von Korff, M., et al., DataWarrior: an open-source program for chemistry aware data visualization and analysis, J. Chem. Inf. Model., 2015, vol. 55, no. 2, pp. 460–473. https://doi.org/10.1021/ci500588j

Scheffers, D. and Driessen, A.J., The polymerization mechanism of the bacterial cell division protein FtsZ, FEBS Lett., 2001, vol. 506, no. 1, pp. 6–10. https://doi.org/10.1016/s0014-5793(01)02855-1

Schneider, P., Tanrikulu, Y., and Schneider, G., Self-organizing maps in drug discovery: compound library design, scaffold-hopping, repurposing, Curr. Med. Chem., 2009, vol. 16, no. 3, pp. 258–266. https://doi.org/10.2174/092986709787002655

Sharma, A.K., Poddar, S.M., Chakraborty, J., et al., A mechanism of salt bridge-mediated resistance to FtsZ inhibitor PC190723 revealed by a cell-based screen, Mol. Biol. Cell, 2023, vol. 34, no. 3. https://doi.org/10.1091/mbc.E22-12-0538

Steinkellner, G., Rader, R., and Thallinger, G.G., VASCo: computation and visualization of annotated protein surface contacts, BMC Bioinform., 2009, vol. 10, no. 32. https://doi.org/10.1186/1471-2105-10-32

Sunseri J. and Koes, D.R., Pharmit: interactive exploration of chemical space, Nucleic Acids Res., 2016, vol. 44, no. W1, pp. W442–W448. https://doi.org/10.1093/nar/gkw287

Suresh, M., Naicker, K., Solanki, J., et al., Ligand-based pharmacophore modelling, virtual screening and docking studies to identify potential compounds against FtsZ of Mycobacterium tuberculosis, Indian J. Tuberculosis, 2023, vol. 70, no. 4, pp. 430–444. https://doi.org/10.1016/j.ijtb.2023.03.003

Tan, C.M., Therien, A.G., Lu, J., et al., Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics, Sci. Transl. Med., 2012, vol. 4, no. 126, p. 126ra35. https://doi.org/10.1126/scitranslmed.3003592

Waterhouse, A., Bertoni, M., Bienert, S., et al., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., 2018, vol. 46, no. W1, pp. W296–W303. https://doi.org/10.1093/nar/gky427

Xu, J. and Zhang, Y., How significant is a protein structure similarity with TM-score=0.5?, Bioinformatics, 2010, vol. 26, no. 7, pp. 889–895. https://doi.org/10.1093/bioinformatics/btq066

Yang, J.M. and Chen, C.C., GEMDOCK: a generic evolutionary method for molecular docking, Proteins, 2004, vol. 55, no. 2, pp. 288–304. https://doi.org/10.1002/prot.20035