Представлено результати поверхневої функціоналізації за допомогою бичачого сироваткового альбуміну напівпровідникових наночастинок (квантових точок) Ag2S, отриманих методом «зеленого» синтезу. Виявлено, що внаслідок функціоналізації максимум люмінесценції квантових точок Ag2S зсувається до короткохвильового діапазону (піки у межах 270–350 нм). У результаті вивчення морфології та розмірів функціоналізованих квантових точок Ag2S встановлено, що для них є характерною однорідна поверхня без структурних дефектів та сферична форма. Діаметр функціоналізованих квантових точок становив приблизно 20 нм, тоді як діаметр квантових точок без функціоналізації – до 10 нм. Отримано кон’югати функціоналізованих квантових точок Ag2S з моноклональними антитілами (на прикладі антитіл TU-01 проти α-субодиниці тубуліну – основного білка мікротрубочок). У результаті спектрофотометричного аналізу виявлено, що спектр люмінесценції отриманих біокон’югатів Ag2S – TU-01 мав декілька максимумів залежно від збудження. Максимуми відповідали діапазону довжин хвиль 410–470 нм. Продемонстровано, що отримані кон’югати Ag2S – TU-01 здатні візуалізувати мікротрубочки, зокрема в клітинах Nicotiana tabacum. Отже, нами вперше створено біокон’югати з моноклональними антитілами за використання квантових точок Ag2S, отриманих методом «зеленого синтезу», який суттєво знижує токсичність таких наночастинок, що дає можливість розглядати їх як ефективні люмінісценті зонди в клітинно-біологічних дослідженнях.
Ключові слова: Ag2S, квантові точки, функціоналізація, моноклональні антитіла, біокон’югація, спектрофотометрія, мікротрубочки

Повний текст та додаткові матеріали
У вільному доступі: PDFЦитована література
Abdellatif, A.A.H., Youni, M.A., Alsharidah, M., Al Rugaie, O., and Tawfeek, H.M., Biomedical applications of quantum dots: overview, challenges, and clinical potential, Int. J. Nanomed., 2022, vol. 17, pp. 1951–1970. https://doi.org/10.2147/IJN.S357980
Ahmad, F., Salem-Bekhit, M.M., Khan, F., Alshehri, S., Khan, A., et al., Unique properties of surface-functionalized nanoparticles for bio-application: functionalization mechanisms and importance in application, MDPI Nanomater., 2022, vol. 12, p. 1333. https://doi.org/10.3390/nano12081333
Ali, M.K., Javaid, S., Afzal, H., Zafar, I., Fayyaz, K., Ain, Q.U., Rather, M.A., Hossain, M.J., Rashid, S., Khan, K.A., and Sharma, R., Exploring the multifunctional roles of quantum dots for unlocking the future of biology and medicine, Environ. Res., 2023, vol. 232, p. 116290. https://doi.org/10.1016/j.envres.2023.116290
Badıllı, U., Mollarasouli, F., Bakirhan, N.K., Ozkan, Y., and Ozkan, S.A., Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery, TrAC Trends Anal. Chem., 2020, vol. 131, p. 116013. https://doi.org/10.1016/j.trac.2020.116013
Blume, Y., Yemets, A., Sheremet, Y., Nyporko, A., Sulimenko, V., Sulimenko, T., and Draber, P., Exposure of beta-tubulin regions defined by antibodies on a Arabidopsis thaliana microtubule protofilament model and in the cells, BMC Plant Biol., 2010, vol. 10, p. 29. https://doi.org/10.1186/1471-2229-10-29
Borovaya, M., Naumenko, A., Horiunova, I., Plokhovska, S., Blume, Y., and Yemets, A., «Green» synthesis of Ag2S nanoparticles, study of their properties and bioimaging applications, Appl. Nanosci., 2020, vol. 10, no. 12, pp. 4931–4940. https://doi.org/10.1007/s13204-020-01365-3
Borovaya, M., Horiunova, I., Plokhovska, S., Pushkarova, N., Blume, Y., and Yemets, A., Synthesis, properties and bioimaging applications of silver-based quantum dots, Int. J. Mol. Sci., 2021, vol. 22, p. 12202. https://doi.org/10.3390/ijms222212202
Bryaskova, R., Georgiev, N., Philipova, N., Bakov, V., Anichina, K., Argirova, M., Apostolova, S., Georgieva, I., and Tzoneva, R. Novel fluorescent benzimidazolehydrazone-loaded micellar carriers for controlled release: Impact on cell toxicity, nuclear and microtubule alterations in breast cancer cells, Pharmaceutics, 2023, vol. 15, p. 1753. https://doi.org/10.3390/pharmaceutics15061753
Chen, X., Ding, L., and Liu P., Synthesis of protein-assisted aqueous Ag2S quantum dots in the bovine serum albumin solution, Surf. Interface Anal., 2014, vol. 46, no. 5, pp. 301–306. https://doi.org/10.1002/sia.5417
Chen, Y.-L., Chen, Y.-C., and Suzuki, A., ImmunoCellCycle-ID – a high-precision immunofluorescence-based method for cell cycle identification, J. Cell Sci., 2024, vol. 137, no. 22, p. jcs263414. https://doi.org/10.1242/jcs.263414
Cordell, J., Developing monoclonal antibodies for immunohistochemistry, Cells, 2022, vol. 11, no. 2, p. 243. https://doi.org/10.3390/cells11020243
Dammes, N. and Peer, D., Monoclonal antibody-based molecular imaging strategies and theranostic opportunities, Theranostics, 2020, vol. 10, no. 2, pp. 938–955. https://doi.org/10.7150/thno.37443
Das, S., Mondal, S., and Ghosh, D., Carbon quantum dots in bioimaging and biomedicines, Front. Bioeng. Biotechnol., 2024, vol. 11, p. 1333752. https://doi.org/10.3389/fbioe.2023.1333752
Devi, S., Kumar, M., Tiwari, A., Tiwari, V., Kaushik, D., Verma, R., Bhatt, S., Sahoo, B.M., Bhattacharya, T., Alshehri, S., Ghoneim, M.M., Babalghith, A.O., and Batiha, G.E., Quantum dots: An emerging approach for cancer therapy, Front. Mater., 2022, vol. 8, p. 798440. https://doi.org/10.3389/fmats.2021.798440
Dráber, P. and Dráberová, E., Dysregulation of microtubule nucleating proteins in cancer cells, Cancers, 2021, vol. 13, no. 22, p. 5638. https://doi.org/10.3390/cancers13225638
Dráber, P., Dráberová, E., Zicconi, D., Sellitto, C., Viklický, V., and Cappuccinelli, P., Heterogeneity of microtubules recognized by monoclonal antibodies to alpha-tubulin, Eur. J. Cell Biol., 1986, vol. 41, no. 1, pp. 82–88.
Dráber, P., Dráberová, E., Linhartová, I., and Viklický, V., Differences in the exposure of C- and N-terminal tubulin domains in cytoplasmic microtubules detected with domain-specific monoclonal antibodies, J. Cell Sci., 1989, vol. 92, no. 3, pp. 519–528. https://doi.org/10.1242/jcs.92.3.519
Dráberová, E., Viklický, V., and Dráber, P., Short communication exposure of lumenal microtubule sites after mild fixation, Eur. J. Cell Biol., 2000, vol. 79, no. 12, pp. 982–985. https://doi.org/10.1078/0171-9335-00129
Eggenberger, K., Merkulov, A., Darbandi, M., Nann, T., and Nick, P., Direct immunofluorescence of plant microtubules based on semiconductor nanocrystals, Bioconjugate Chem., 2007, vol. 18, pp. 1879–1886. https://doi.org/10.1021/bc700188d
Estrada-Rojas, P., Hernández-Paz, J.F., Rodríguez-González, C.A., Mendoza-Duarte, M.E., Martel-Estrada, S.A., Valencia-Gómez, L.E., Camacho-Montes, H., and Olivas-Armendáriz, I., One-pot synthesis and characterization of a BSA-Cu2S/CuS quantum dots drug delivery system based on biuret’s reaction, Mater. Res. Express, 2025, vol. 12, no. 1, p. 015406. https://doi.org/10.1088/2053-1591/ada5b0
Estrada-Rojas, P., Hernández-Paz, J.F., Rodríguez-González, C.A., Mendoza-Duarte, M.E., Martel-Estrada, S.A., Valencia-Gómez, L.E., Camacho-Montes, H., and Olivas-Armendáriz, I., One-pot synthesis and characterization of a BSA-Cu2S/CuS quantum dots drug delivery system based on biuret’s reaction, Mater. Res. Express, 2025, vol. 12, no. 1, p. 015406. https://doi.org/10.1088/2053-1591/ada5b0
Fu, Y., Guan, E., Liang, J., Ren, G., and Chen, L., Probing the effect of Ag2S quantum dots on human serum albumin using spectral techniques, J. Nanomater., 2017, vol. 2017, p. 7209489. https://doi.org/10.1155/2017/7209489
Hausrat, T.J., Radwitz, J., Lombino, F.L., Breiden, P., and Kneussel, M., Alpha- and beta-tubulin isotypes are differentially expressed during brain development, Dev. Neurobiol., 2021, vol. 81, no. 3, pp. 333–350. https://doi.org/10.1002/dneu.22745
Huang, Y., Lu, G., and Zhou, L., A mini review on selenium quantum dots: Synthesis and biomedical applications, Front. Bioeng. Biotechnol., 2023. vol. 11, p. 1332993. https://doi.org/10.3389/fbioe.2023.1332993
Ikeri, H.I., Onyia, A.I, and Vwavware, O.J., The dependence of confinement energy on the size of quantum dots, Int. J. Sci. Res. Phys. Appl. Sci., 2019, vol. 7, no. 2, pp. 27–30. https://doi.org/10.26438/ijsrpas/v7i2.2730
Juan, A., Cimas, F.J., Bravo, I., Pandiella, A., Ocaña, A., and Alonso-Moreno, C., An overview of antibody conjugated polymeric nanoparticles for breast cancer therapy, Pharmaceutics, 2020, vol. 12, no. 9, p. 802. https://doi.org/10.3390/pharmaceutics12090802
Karakoti, A., Shukla, R., Shanker, R., and Singh, S., Surface functionalization of quantum dots for biological applications, Adv. Colloid Interface Sci., 2015, vol. 215, pp. 28–45. https://doi.org/10.1016/j.cis.2014.11.004
Khaledian, S., Abdoli, M., Fatahian, R., and Zahabi, S., Quantum dots in cancer cell imaging, in Quantum Dots—Recent Advances, New Perspectives and Contemporary Applications, Thirumalai, J., Ed., IntechOpen, 2023. https://doi.org/10.5772/intechopen.10210
Kothari, M., Wanjari, A., Acharya, S., Karwa, V., Chavhan, R., Kumar, S., Kadu, A., and Patil, R.A., Comprehensive review of monoclonal antibodies in modern medicine: tracing the evolution of a revolutionary therapeutic approach, Cureus, 2024, vol. 16, no. 6, p. e61983. https://doi.org/10.7759/cureus.61983
Le, N. and Kim, K., Current advances in the biomedical applications of quantum dots: Promises and challenges, Int. J. Mol. Sci., 2023, vol. 24, no. 16, p. 12682. https://doi.org/10.3390/ijms241612682
Liu, W., Howarth, M., Greytak, A.B., Zheng, Y., Nocera, D.G., Ting, A.Y., and Bawendi, M.G., Compact biocompatible quantum dots functionalized for cellular imaging, J. Am. Chem. Soc., 2008, vol. 130, no. 4, pp. 1274–1284. https://doi.org/10.1021/ja076069p
Lu, R.M., Hwang, Y.C., Liu, I.J., Lee, C.-C., Tsai, H.-Z., Li, H.-J., and Wu, H.-C., Development of therapeutic antibodies for the treatment of diseases, J. Biomed. Sci., 2020, vol. 27, p. 1. https://doi.org/10.1186/s12929-019-0592-z
Mason, J.N., Tomlinson, I.D., Rosenthal, S.J., and Blakely, R.D., Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates, Methods Mol. Bi-ol., 2005, vol. 303, pp. 35–50. https://doi.org/10.1385/1-59259-901-X:035
Mazumder, S., Dey, R., Mitra, M.K, Mukherjee, S., and Das, G.C., Review: biofunctionalized quantum dots in biology and medicine, J. Nanomater., 2009, vol. 2009, p. 815734. https://doi.org/10.1155/2009/815734
Mekala, J.R., Nalluri, H.P., Reddy, P.N., Sainath, S.B.J., Kumar, N.S.S., Kiran, G.V.S.D.S., Dhiman, R., Chamarthy, S., Rao, K.R., Manyam, R.R., and Dirisal, V.R., Emerging trends and therapeutic applications of monoclonal antibodies, Gene, 2024, vol. 925, p. 148607. https://doi.org/10.1016/j.gene.2024.148607
Mondal, J., Lamba, R., Yukta, Y., Yadav, R., Kumar, R., Pani, B., and Singh, B., Advancements in semiconductor quantum dots: Expanding frontiers in optoelectronics, analytical sensing, biomedicine, and catalysis, J. Mater. Chem. C, 2024, vol. 12, pp. 10330–10389. https://doi.org/10.1039/D4TC01396D
Sahoo, S.L., Liu, C.-H., Kumari, M., Wu, W.-C., and Wang, C.-C., Biocompatible quantum dot-antibody conjugate for cell imaging, targeting and fluorometric immunoassay: Crosslinking, characterization and applications, RSC Adv., 2019, vol. 9, pp. 32791–32803. https://doi.org/10.1039/C9RA07352C
Sanita, G., Carrese, B., and Lamberti, A., Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization, Front. Mol. Biosci., 2020, vol. 7, p. 587012. https://doi.org/10.3389/fmolb.2020.587012
Vus, K., Tarabara, U., Danylenko, I., Pirko, Ya., Krupodorova, T., Yemets, A., Blume, Ya., Turchenko, V., Klymchuk, D., Smertenko, P., Zhytniakivska, O., Trusova, V., Petrushenko, S., Bogatyrenko, S., and Gorbenko, G., Silver nanoparticles as inhibitors of insulin amyloid formation: A fluorescence study, J. Mol. Liq., 2021, vol. 342, p. 117508. https://doi.org/10.1016/j.molliq.2021.117508
Wu, S.S., Zhang, J.Z., Yu, X.H., Ying, C., and Wang, H.J., BSA-conjugated CdS/Ag2S quantum dots: Synthesis and preliminary antineoplastic assessment, RSC Adv., 2014, vol. 4, pp. 63502–63507. https://doi.org/10.1039/C4RA09526J
Yan, R., Yu, B.Q., Yin, M.M., Zhou, Z.Q., Xiang, X., Han, X.L., Liu, Y., and Jiang, F.L., The interactions of CdTe quantum dots with serum albumin and subsequent cytotoxicity: The influence of homologous ligands, Toxicol. Res., 2018, vol. 7, no. 2, pp. 147–155. https://doi.org/10.1039/c7tx00301c
Ye, Q., Guo, L., Wu, D., Yang, B., Tao, Y., Deng, L., and Kong, Y., Covalent functionalization of bovine serum albumin with graphene quantum dots for stereospecific molecular recognition, Anal. Chem., 2019, vol. 91, no. 18, pp. 11864–11871. https://doi.org/10.1021/acs.analchem.9b02605
Yemets, A., Plokhovska, S., Pushkarova, N., and Blume, Ya., Quantum dot-antibody conjugates for immunofluorescence studies of biomolecules and subcellular structures, J. Fluorescence, 2022, vol. 32, no. 5, pp. 1713–1723. https://doi.org/10.1007/s10895-022-02968-5
Yemets, A.I., Blume, Ya.B., Kundelchuk, O.P., Smertenko, A.P., Solodushko, V.A., Rudas, V.A., and Gleba, Yu.Yu., Transfer of amiprophosmethyl-resistance from Nicotiana plumbaginifolia mutant by somatic hybridization, Theor. Appl. Genet., 2000, vol. 100, no. 6, pp. 847–857. https://doi.org/10.1007/s001220051361
Yemets, A., Stelmakh, O., and Blume, Y.B., Effects of the herbicide isopropyl-N-phenyl carbamate on microtubules and MTOCs in lines of Nicotiana sylvestris resistant and sensitive to its action, Cell Biol. Int., 2008, vol. 32, no. 6, pp. 623–629. https://doi.org/10.1016/j.cellbi.2008.01.012
Zhang, J., Chen, L. Zeng, B. Kang, Q., and Dai, L., Study on the binding of chloroamphenicol with bovine serum albumin by fluorescence and UV–vis spectroscopy, Spectrochim. Acta, Part A, 2013, vol. 105, pp. 74–79. https://doi.org/10.1016/j.saa.2012.11.06
Zhang, L., Mazouzi, Y., Salmain, M., Liedberg, B., and Boujday, S., Antibody-gold nanoparticle bioconjugates for biosensors: Synthesis, characterization and selected application, Biosens. Bioelectron., 2020, vol. 165, p. 112370 https://doi.org/10.1016/j.bios.2020.112370