Цитологія і генетика 2024, том 58, № 5, 18-28
Cytology and Genetics 2024, том 58, № 5, 385–394, doi: https://www.doi.org/10.3103/S0095452724050116

Гістондеацетилази рослин, їх класифікація та пошук інгібіторів

Стихиляс М.М., Раєвський О.В., Блюм Я.Б.

  • ДУ «Інститут харчової біотехнології та геноміки НАН України», вул. Байди Вишневецького, 2А, Київ, 04123, Україна

Гістондеацетилази є родиною ферментів, залучених до регуляції багатьох важливих процесів у клітинах рослин та тварин. Рослинні гістондеацетилази вивчені значно менше порівняно з людськими. В даному дослідженні увага була зосереджена на поглибленій характеристиці гістондеацетилаз двох модельних видів рослин – Arabidopsis thaliana та Oryza sativa. За допомогою аналізу філогенетичної спорідненості до їх відомих гомологів людини було встановлено близькість до трьох класів гістондеацетилаз людини. Виявлено, що найвищу спорідненість серед гістондеацетилаз різного еволюційного походження мають HDAC6 людини та HDA5 A. thaliana (43,6 % гомології). Результати структурного вирівнювання свідчать про консервативність каталітичних доменів та високу спорідненість інгібіторів до обох гістондеацетилаз. Високий рівень відомих інгібіторів гістондеацетилаз людини до HDA5 A. thaliana продемонстровано за допомогою ліганд-білкового докінгу. Отримані результати дозволяють припустити високу ефективність застосування інгібіторів гістондеацетилаз людини до гістондеацетилаз рослин з метою покращення регуляції процесів їх росту та розвитку, а також стійкості до стресових чинників.

Ключові слова: гістондеацетилази, Arabidopsis thaliana, Oryza sativa, класифікація за гомологією, молекулярний докінг, інгібітори

Цитологія і генетика
2024, том 58, № 5, 18-28

Current Issue
Cytology and Genetics
2024, том 58, № 5, 385–394,
doi: 10.3103/S0095452724050116

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

Bondarev, A.D., Attwood, M.M., et al., Recent developments of HDAC inhibitors: Emerging indications and novel molecules, Br. J. Clin. Pharmacol., 2021, vol. 87, no. 12, pp. 4577–4597. https://doi.org/10.1111/bcp.14889

Camacho, C., Coulouris, G., Avagyan, V., et al., BLAST+: architecture and applications, BMC Bioinf., 2009, vol. 10, p. 421. https://doi.org/10.1186/1471-2105-10-421

Chen, X., Lu, L., Mayer, K.S., et al., POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis, Elife, 2016, vol. 5, p. e17214. https://doi.org/10.7554/eLife.17214

Chen, X., Ding, A.B., and Zhong, X., Functions and mechanisms of plant histone deacetylases, Sci. China Life Sci., 2020, vol. 63, no. 2, pp. 206–216. https://doi.org/10.1007/s11427-019-1587-x

Chinellato, M., Perin, S., Carli, A., et al., Folding of class IIa HDAC derived peptides into α-helices upon binding to myocyte enhancer factor-2 in complex with DNA, J. Mol. Biol., 2024, vol. 436, no. 9, p. 168541. https://doi.org/10.1016/j.jmb.2024.168541

D’Mello, S.R., Histone deacetylases as targets for the treatment of human neurodegenerative diseases, Drug News Perspect., 2009, vol. 22, no. 9, pp. 513–524. https://doi.org/10.1358/dnp.2009.9.1428871

Eberhardt, J., Santos-Martins, D., Tillack, A.F., and Forli, S., AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings, J. Chem. Inf. Model., 2021, vol. 61, no. 8, pp. 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203

Farsetti, A., Illi, B., and Gaetano, C., How epigenetics impacts on human diseases, Eur. J. Int. Med., 2023, vol. 114, pp. 15–22. https://doi.org/10.1016/j.ejim.2023.05.036

Fischer, F., Alves Avelar, L.A., A short overview of resistance to approved histone deacetylase inhibitors, Future Med. Chem., 2021, vol. 13, no. 14, pp. 1153–1155. https://doi.org/10.4155/fmc-2021-0102

Haberland, M., Montgomery, R.L., and Olson, E.N., The many roles of histone deacetylases in development and physiology: implications for disease and therapy, Nat. Rev. Genet., 2009, vol. 10, no. 1, pp. 32–42. https://doi.org/10.1038/nrg2485

Han, Z., Yu, H., Zhao, Z., et al., AtHD2D gene plays a role in plant growth, development, and response to abiotic stresses in A. thaliana, Front. Plant Sci., 2016, vol. 7, p. 310. https://doi.org/10.3389/fpls.2016.00310

Hartl, M., Füßl, M., Boersema, P.J., et al., Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis, Mol. Syst. Biol., 2017, vol. 13, no. 10, p. 949. https://doi.org/10.15252/msb.20177819

Holcomb, M., Santos-Martins, D., Tillack, A.F., and Forli, S., Performance evaluation of flexible macrocycle docking in AutoDock, QRB Discovery, 2022, vol. 3, p. e18. https://doi.org/10.1017/qrd.2022.18

Hollender, C. and Liu, Z., Histone deacetylase genes in Arabidopsis development, J. Integr. Plant Biol., 2008, vol. 50, no. 7, pp. 875–885. https://doi.org/10.1111/j.1744-7909.2008.00704.x

Hua, G.J., Hung, C.L., Lin, C.Y., et al., MGUPGMA: A fast UPGMA algorithm with multiple graphics processing units using NCCL, Evol. Bioinf. Online, 2017, vol. 13, p. 1176934317734220. https://doi.org/10.1177/1176934317734220

Krogan, N.T., Hogan, K., and Long, J.A., APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19, Development, 2012, vol. 139, no. 22, pp. 4180–4190. https://doi.org/10.1242/dev.085407

Lee, H.G. and Seo, P.J., MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis, Nat. Commun., 2019, vol. 10, no. 1, p. 1713. https://doi.org/10.1038/s41467-019-09417-1

Lee, S.H., Farh, M.E., Lee, J., et al., A Histone deacetylase, Magnaporthe oryzae RPD3, regulates reproduction and pathogenic development in the rice blast fungus, mBio, 2021, vol. 12, no. 6, p. e0260021. https://doi.org/10.1128/mBio.02600-21

Li, Y., Shin, D., and Kwon, S.H., Histone deacetylase 6 plays a role as a distinct regulator of diverse cellular processes, FEBS J., 2013, vol. 280, no. 3, pp. 775–793. https://doi.org/10.1111/febs.12079

Liu, C., Li, L.C., Chen, W.Q., et al., HDA18 affects cell fate in Arabidopsis root epidermis via histone acetylation at four kinase genes, Plant Cell, 2013, vol. 25, no. 1, pp. 257–269. https://doi.org/10.1105/tpc.112.107045

Liu, X., Chen, C.Y., Wang, K.C., et al., PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings, Plant Cell, 2013, vol. 25, no. 4, pp. 1258–1273. https://doi.org/10.1105/tpc.113.109710

Liu, X., Yang, S., Zhao, M., et al., Transcriptional repression by histone deacetylases in plants, Mol. Plant, 2014, vol. 7, no. 5, pp. 764–772. https://doi.org/10.1093/mp/ssu033

Luo, M., Wang, Y.Y., Liu, X., et al., HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis, J. Exp. Bot., 2012a, vol. 63, no. 8, pp. 3297–3306. https://doi.org/10.1093/jxb/ers059

Luo, M., Yu, C.W., Chen, F.F., et al., Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in Arabidopsis, PLoS Genet., 2012b, vol. 8, no. 12, p. e1003114. https://doi.org/10.1371/journal.pgen.1003114

Luo, M., Tai, R., Yu, C.W., et al., Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis, Plant J., 2015, vol. 82, no. 6, pp. 925–936. https://doi.org/10.1111/tpj.12868

Mooers, B.H.M., Shortcuts for faster image creation in PyMOL, Protein Sci., 2020, vol. 29, no. 1, pp. 268–276. https://doi.org/10.1002/pro.3781

Naz, F., Khan, F.I., Mohammad, T., et al., Investigation of molecular mechanism of recognition between citral and MARK4: A newer therapeutic approach to attenuate cancer cell progression, Int. J. Biol. Macromol., 2018, vol. 107, pp. 2580–2589. https://doi.org/10.1016/j.ijbiomac.2017.10.143

Olenieva, V.D., Lytvyn, D.I., Yemets, A.I., and Blume, Ya.B., Influence of sucrose starvation, osmotic and salt stresses on expression profiles of genes involved in the development of autophagy by means of microtubules, Bull. Vavilov Soc. Genet. Breed. Ukr., 2017, vol. 15, no. 2, pp. 174–180. https://doi.org/10.7124/visnyk.utgis.15.2.876

Ravindranath, P.A., Forli, S., Goodsell, D.S. et al., AutoDockFR: advances in protein-ligand docking with explicitly specified binding site flexibility, PLoS Comput. Biol., 2015, vol. 11, no. 12, p. e1004586. https://doi.org/10.1371/journal.pcbi.1004586

Schwede, T., Kopp, J., Guex, N., and Peitsch, M.C., SWISS-MODEL: An automated protein homology-modeling server, Nucleic Acids Res., 2003, vol. 31, no. 13, pp. 3381–3385. https://doi.org/10.1093/nar/gkg520

Shen, Y., Lei, T., Cui, X., et al., Arabidopsis histone deacetylase HDA15 directly represses plant response to elevated ambient temperature, Plant J., 2019, vol. 100, no. 5, pp. 991–1006. https://doi.org/10.1111/tpj.14492

Tamura, K., Stecher, G., and Kumar, S., MEGA11: molecular evolutionary genetics analysis version 11, Mol. Biol. Evol., 2021, vol. 38, no. 7, pp. 3022–3027. https://doi.org/10.1093/molbev/msab120

Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, vol. 22, no, 22, pp. 4673–4680. https://doi.org/10.1093/nar/22.22.4673

Tran, H.T., Nimick, M., Uhrig, R.G., et al., Arabidopsis thaliana histone deacetylase 14 (HDA14) is an α-tubulin deacetylase that associates with PP2A and enriches in the microtubule fraction with the putative histone acetyltransferase ELP3, Plant J., 2012, vol. 71, no. 2, pp. 263–272.

Ueda, M., Matsui, A., Tanaka, M., et al., The distinct roles of class I and II RPD3-like histone deacetylases in salinity stress response, Plant Physiol., 2017, vol. 175, no. 4, pp. 1760–1773. https://doi.org/.1104/pp.17.01332

van der Woude, L.C., Perrella, G., Snoek, B.L., et al., HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion, Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, no. 50, pp. 25343–25354. https://doi.org/10.1073/pnas.1911694116

Venturelli, S., Belz, R.G., Kämper, A., et al., Plants release precursors of histone deacetylase inhibitors to suppress growth of competitors, Plant Cell, 2015, vol. 27, no. 11, pp. 3175–3189. https://doi.org/10.1105/tpc.15.00585

Williams, C.J., Headd, J.J., Moriarty, N.W., et al., MolProbity: More and better reference data for improved all-atom structure validation, Protein Sci., 2018, vol. 27, no. 1, pp. 293–315. https://doi.org/10.1002/pro.3330

Wu, Q.J., Zhang, T.N., Chen, H.H., et al., The sirtuin family in health and disease, Signal Transduction Targeted Ther., 2022, vol. 7, no. 1, p. 402. https://doi.org/10.1038/s41392-022-01257-8

Xu, C.R., Liu, C., Wang, Y.L., et al., Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 40, pp. 14469–14474. https://doi.org/10.1073/pnas.0503143102

Yang, X.J. and Seto, E., The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men, Nat. Rev. Mol. Cell Biol., 2008, vol. 9, no. 3, pp. 206–218. https://doi.org/10.1038/nrm2346

Yang, F., Zhao, N., Ge, D., and Chen, Y., Next-generation of selective histone deacetylase inhibitors, RSC Adv., 2019, vol. 9, no. 34, pp. 19571–19583. https://doi.org/10.1039/c9ra02985k

Yu, C.W., Liu, X., Luo, M., et al., HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis, Plant Physiol., 2011, vol. 156, no. 1, pp. 173–184. https://doi.org/10.1104/pp.111.174417

Zhao, L., Peng, T., Chen, C.Y., et al., HY5 Interacts with the histone deacetylase HDA15 to repress hypocotyl cell elongation in photomorphogenesis, Plant Physiol., 2019, vol. 180, no. 3, pp. 1450–1466. https://doi.org/10.1104/pp.19.00055

Zheng, Y., Ding, Y., Sun, X., et al., Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis, J. Exp. Bot., 2016, vol. 67, no. 6, pp. 1703–1713. https://doi.org/10.1093/jxb/erv562