ISSN 0564-3783  



Головна
Контакти
Архів  
Тематика журналу
Підписка
До уваги авторів
Редколегія
Мобільна версія


In English

Export citations
UNIMARC
BibTeX
RIS





Genetic Variability in Winter Rye (Secale cereale L.) Accessions at Early Stage of Self-pollination Manifested through Fertility, Plant height and Secalins

Daskalova N., Doneva S., Spetsov P.

Реферат статті 




РЕЗЮМЕ. Селекцію озимих самозапильних рослин з невеликою або середньою висотою стебла ініціювали у 15 популяціях культурного жита. Протягом перших двох років було зафіксовано близько 8,8% насіння на одному самозапиленому колоску. У інбредних сімействах S2 спостерігали самозапилення у діапазоні від 0 до 73 зернин на окремий колос, і висота рослин складала від 76 до 115 см. Реакція на селекцію та генетичне удосконалення у процентному вираженні середнього числа характеризувало сімейства S3 щодо одного циклу селекції. Зразки ДНС-ПААГ продемонстрували дві основні смуги протеїну для високомолекулярних секалінів жита – одна х-субодиниця з повільним рухом, виражена як 2r, 5,2*r і 5,3r, і друга у-субодиниця з швидким рухом, виражена як 6r, 6,5r, 7r і 9r. Що стосується алелів у локусах Glu-R1 та Gli-R2, 9 нащадків продемонстрували генетичну гомогенність у білках, що супроводжувалося низькими коефіцієнтами зміни висоти рослини. Високомолекулярні комбінації 2r (окрема смуга) і 5,3r+7r були визначені як нові субодиниці секаліну. 75K γ-секаліни, кодовані у Gli-R2, складалися з алелів a, b, c для субодиниць d1, d2 і t1, відповідно. Результати продемонстрували, що чотири, з-поміж усіх, нащадки самозапиленого жита є гомогенними генотипами, і їх можна використовувати як інбредні лінії у подальших генетичних та селекційних експериментах.

Ключові слова: жито, інбредні лінії, висота рослин, дата колосіння, самозапилення, секаліни, Glu-R1, Gli-R2

Цитологія і генетика 2021, том 55, № 1, C. 98-100

  1. Plant Production Department, Technical University, Varna, 9010 Bulgaria
  2. Dobrudzha Agricultural Institute, General Toshevo, 9520 Bulgaria
  3. Aksakovo Center, Aksakovo, Varna region, 9154 Bulgaria

E-mail: pspetsov abv.bg

Daskalova N., Doneva S., Spetsov P. Genetic Variability in Winter Rye (Secale cereale L.) Accessions at Early Stage of Self-pollination Manifested through Fertility, Plant height and Secalins, Цитологія і генетика., 2021, том 55, № 1, C. 98-100.

В "Cytology and Genetics". Якщо тільки можливо, цитуйте статтю по нашій англомовній версії:
N. Daskalova, S. Doneva & P. Spetsov Genetic Variability in Winter Rye (Secale cereale L.) Accessions at Early Stage of Self-Pollination Manifested through Fertility, Plant Height and Secalins, Cytol Genet., 2021, vol. 55, no. 1, pp. 96–104
DOI: 10.3103/S0095452721010059


Посилання

1. Amiour, N., Dardevet, M., Khelifi, D., Bouguennec, A., and Branlard, G., Allelic variation of HMW and LMW glutenin subunits, HMW secalin subunits and 75K gamma-secalins of hexaploid triticale, Euphytica, 2002a, vol. 123, pp. 179–186.

2. Amiour, N., Bouguennec, A., Marcoz, C., Sourdille, P., Bourgoin, M., Khelifi, D., and Branlard, G., Diversity of seven glutenin and secalin loci within triticale cultivars grown in Europe, Euphytica, 2002b, vol. 123, pp. 295–305.

3. APHA, 2019. United Kingdom National List Trials: Trial Procedures for Official Examination of Value for Cultivation and Use (VCU) Harvest 2019, March 2019. https://assets.publishing.service.gov.uk/vcu-procedure-winter-oilseed19.pdf.

4. Arias Aquirre, A., Studer, B., Do Santo, J., Frei, U., and Lübberstedt, T., Mapping a new source of self-fertility in perennial ryegrass (Lolium perenne L.), Plant Breed. Biotech., 2013, vol. 1, pp. 385–395. https://doi.org/10.9787/PBB.2013.1.4.385

5. Bellil, I., Bouguennec, A., and Khelifi, D., Diversity of seven glutenin and secalin loci within triticale cultivars grown in France, Not. Bot. Hort. Agrobot. Cluj., 2010, vol. 38, pp. 48–55.

6. Crespo-Herrera, L.A., Garkava-Gustavsson, L., and Ahman, I., A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.), Hereditas, 2017, vol. 154, pp. 1–9. https://doi.org/10.1186/s41065-017-0033-5

7. Czyczylo-Mysza, I. and Myskow, B., Analysis of the impact of drought on selected morphological, biochemical and physiological traits of rye inbred lines, Acta Physiol. Plant., 2017, vol. 39, p. 87. https://doi.org/10.1007/s11738-017-2385-x

8. Daskalova, N. and Spetsov, P., Taxonomic relationships and genetic variability of wild Secale L. species as a source for valued traits in rye, wheat and triticale breeding, Cytol. Genet., 2020, vol. 54, pp. 71–81. https://doi.org/10.3103/S0095452720010041

9. Dennett, A.L., Cooper, K.V., and Trethowan, R.M., The genotypic and phenotypic interaction of wheat and rye storage proteins in primary triticale, Euphytica, 2013, vol. 194, pp. 235–242. https://doi.org/10.1007/s10681-013-0950-y

10. Doneva, S., Daskalova, N., and Spetsov, P., Transfer of novel storage proteins from a synthetic hexaploid line into bread wheat, Zemdirbyste-Agriculture, 2018, vol. 105, pp. 113–122. https://doi.org/10.13080/z-a.2018.105.015

11. Egorova, I.A., Peneva, T.I., Baranova, O.A., and Voylokov, A.V., Analysis of linkage between biochemical and morphological markers of rye chromosomes 1R, 2R, and 5R and mutations of self-fertility at the main incompatibility loci, Russ. J. Genet., 2000, vol. 36, pp. 1423–1430.

12. Goncharenko, A.A., Makarov, A.V., Ermakov, S.A., Semenova, T.V., and Tochilin, V.N., Evaluation of ecological stability and plasticity of inbred lines of winter rye, Russ. Agric. Sci., 2015, vol. 41, pp. 87–94. https://doi.org/10.3103/S106836741502010X

13. Goncharenko, A.A., Makarov, A.V., Ermakov, S.A., Semenova, T.V., Tochilin, V.N., Tsygankova, N.V., and Krahmaleva, O.A., Selection of winter rye (Secale cereale L.) inbred lines for general and specific combining ability and its relationship with valuable traits, Agric. Biol., 2019, vol. 54, pp. 38–46. https://doi.org/10.15389/agrobiology.2019.1.38eng

14. Hansen, H.B., Møller, B., Andersen, S.B., Jørgensen, J.R., and Hansen, A., Grain characteristics, chemical composition, and functional properties of rye (Secale cereale L.) as influenced by genotype and harvest year, J. Agric. Food Chem., 2004, vol. 52, pp. 2282–2291. https://doi.org/10.1021/jf0307191

15. Igrejas, G., Guedes-Pinto, H., Carnide, V., and Branlard, G., Seed storage protein diversity in triticale varieties commonly grown in Portugal, Plant Breed., 1999, vol. 118, pp. 303–306. https://doi.org/10.1046/j.1439-0523.1999.00379.x

16. Johnson, H.W., Robinson, H.F., and Comstock, R.E., Estimation of genetic and environmental variability in soybeans, Agron. J., 1955, vol. 47, pp. 314–318.

17. Jurkowski, A., Bujak, H., and Nowosad, K., Estimation of the level of infection by the powdery mildew Blumeria graminis f. sp. secalis of winter rye Secale cereale L. breeding material, JøKULL J., 2014, vol. 64, p. 332.

18. Kozub, N.A., Motsnyi, I.I., Sozinov, I.A., Blume, Ya.B., and Sozinov, A.A., Mapping a new secalin locus on the rye 1RS arm, Cytol. Genet., 2014, vol. 48, pp. 203–207. https://doi.org/10.3103/S0095452714040021

19. Kubicka, H., Carrillo, J.M., and Benito, C., Morphological variability and storage proteins polymorphism in inbred lines of winter rye Secale cereale L., Zeszyty Naukowe Politechniki Bialostockiej, 2005, vol. 10, pp. 257–265.

20. Kuneva, V., Valchinova, E., and Stoyanova, A., Evaluation of rye specimens in maturity stage on the basis of mathematical-statistical analysis, Agric. Sci. Technol., 2018, vol. 10, pp. 21–24. https://doi.org/10.15547/ast.2018.01.005

21. Kussovska, V., Agronomic characteristics of the newly synthesized primary alloplasmic octoploid forms of triticale, Bulg. J. Agric. Sci., 2011, vol. 17, pp. 145–149.

22. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

23. McIntosh, R.A., Hart, G.E., Devos, K.M., Morris, C.F., and Rogers, W.J., V. Catalogue of Gene Symbols for Wheat: 2003 Supplement, Ann. Wheat Newsl., 2003, vol. 49, pp. 246–282.

24. Miedaner, T., Mtiller, B.U., Piepho, H.-P., and Falke, K.C., Genetic architecture of plant height in winter rye introgression libraries, Plant Breed., 2011, vol. 130, pp. 209–216. https://doi.org/10.1111/j.1439-0523.2010.01823.x

25. Miedaner, T., Schwegler, D.D., Wilde, P., and Reif, J.C., Association between line per se and testcross performance for eight agronomic and quality traits in winter rye, Theor. Appl. Genet., vol. 127, pp. 33-41. https://doi.org/10.1007/s00122-013-2198-2

26. Prášilová, P. and Prášil, I., Winter-hardiness scale for wheat cultivars of different geographical origin, Icel. Agr. Sci., 2001, vol. 14, pp. 35–39.

27. Rakoczy-Trojanowska, M., Orczyk, W., Krajewski, P., Bocianowski, J., Stochmal, A., and Kowalczyk, M., ScBx gene based association analysis of hydroxamate content in rye (Secale cereale L.), J. Appl. Genet., 2017, vol. 58, pp. 1–9. https://doi.org/10.1007/s13353-016-0356-3

28. Ribeiro, M., Seabra, L., Ramos, A., Santos, S., Pinto-Carnide, O., Carvalho, C., and Igrejas, G., Polymorphism of the storage proteins in Portuguese rye (Secale cereale L.) populations, Hereditas, 2012, vol. 149, pp. 72–84. https://doi.org/10.1111/j.1601-5223.2012.02239.x

29. Salmanowicz, B.P., Langner, M., and Kubicka-Matusiewicz, H., Variation of high-molecular-weight secalin subunit composition in rye (Secale cereale L.) inbred lines, J. Agric. Food Chem., 2014, vol. 62, pp. 10535–10541. https://doi.org/10.1021/jf502926q

30. Schlegel, R., Current List of Wheats with Rye and Alien Introgression, version 02-14, 2014. http://www.rye-gene-map.de/rye-introgression.

31. Sesay, S., Ojo, D., Ariyo, O.J., and Meseka, S., Genetic variability, heritability and genetic advance studies in top-cross and three-way cross maize (Zea mays L.) hybrids, Maydica, 2016, vol. 61, pp. 1–7.

32. Shewry, P.R., Parmar, S., and Miflin, B.J., Extraction, separation and polymorphism of the prolamin storage proteins (secalins) of rye, Cereal Chem., 1983, vol. 60, pp. 1–6.

33. Simmonds, N.W., Principles of Crop Improvement, USA, New York: Longman, 1979.

34. Singh, R.K. and Chaudhary, B.D., Biometrical Methods in Quantitative Genetic Analysis, New Delhi, India: Kalyani Publishers, 2004.

35. Singh, N.K., Shepherd, K.W., and Cornish, G.B., A simplified SDS-PAGE procedure for separating LMW subunits of glutenin, J. Cereal Sci., 1991, vol. 14, pp. 203–208.

36. Snedecor, G.W. and Cochran, W.G., Statistical Methods, 7th ed., The Iowa State University Press, 1980.

37. Tikhenko, N., Rutten, T., Voylokov, A., and Houben, A., Analysis of hybrid lethality in F1 wheat-rye hybrid embryos, Euphytica, 2008, vol. 159, pp. 367–375. https://doi.org/10.1007/s10681-007-9528-x

38. Tikhenko, N.D., Tsvetkova, N.V., Lyholay, A.N., and Voylokov, A.V., Identification of complementary genes of hybrid lethality in crosses of bread wheat and rye. Results and prospects, Russ. J. Genet.: Appl. Res., 2017, vol. 7, pp. 153–158. https://doi.org/10.1134/S2079059717020149

39. Voylokov, A.V., Prospects of using self-fertility in breeding rye populations varieties, Russ. J. Genet., 2007, vol. 43, pp. 1402–1410.https://doi.org/10.1134/S1022795407100122

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 27.09.21