Генетичний поліморфізм рідкісного селекційно і декоративно цінного виду Iris pumila досліджено за допомогою ПЛР-аналізу з праймерами трьох типів: на основі мікросателітних послідовностей (ISSR), послідовностей МГЕ (IRAP та iPBS) та генів відповіді на абіотичний стрес (LP-PCR). Виявлено високий рівень внутрішньовидового та внутрішньопопуляційного генетичного поліморфізму, який не поступався значенням інших видів роду Iris. Основні показники генетичного поліморфізму п’яти популяцій I. pumila з території України склали: частка поліморфних локусів (Р) – 26,5–68,5 %, індекс Шеннона (S) – 0,105–0,285, генне різноманіття (Hе) – 0,069–0,190. Залежність рівня мінливості від розміру популяції була прямою у ISSR-аналізі і оберненою за даними інших двох маркерів. Пряму залежність генетичних та географічних дистанцій між популяціями виявили лише ISSR-маркери. Найвищий рівень поліморфізму виявляли LP-PCR-маркери, але встановити популяційну приналежність усіх особин дозволили лише ISSR-маркери. Апробована система ПЛР-маркерів може бути застосована для моніторингу стану генофонду, вивчення генетичної структури популяцій та міграційних процесів.
Ключові слова: Iris pumila L., рідкісний вид, ПЛР-аналіз, генетичний поліморфізм, генетична структура популяцій
Повний текст та додаткові матеріали
Цитована література
1. Allendorf, F.W., Genetics and the conservation of natural populations: allozymes to genomes, Mol. Ecol., 2017, vol. 26, pp. 420–430. https://doi.org/10.1111/mec.13948
2. Antao, T. and Beaumont, M.A., Mcheza: a workbench to detect selection using dominant markers, Bioinformatics, 2011, vol. 27, no. 12, pp. 1717–1718. https://doi.org/10.1093/bioinformatics/btr253
3. Biswas, M.K., Xu, Q., and Deng, X., Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic ana-lysis of Citrus spp., Sci. Hortic., 2010, vol. 124, no. 2, pp. 254–261. https://doi.org/10.1016/j.scienta.2009.12.013
4. Bothwell, H., Bisbing, S., Therkildsen, N.O., et al., Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach, Conserv. Genet., 2013, vol. 14, pp. 467–481. https://doi.org/10.1007/s10592-012-0411-5
5. Bublyk, O.M., Andreev, I.O., Kalendar, R.N., et at., Efficiency of different PCR-based marker systems for assessment of Iris pumila genetic diversity, Biologia, 2013, vol. 68, no. 4, pp. 613–620. https://doi.org/10.2478/s11756-013-0192-4
6. Bublyk, O., Andreev, I., Parnikoza, I., and Kunakh, V., Population genetic structure of Iris pumila L. in Ukraine: effects of habitat fragmentation, Acta Biol. Cracov. Bot., 2020, vol. 62, no. 1, pp. 51–61. https://doi.org/10.24425/abcsb.2020.131665
7. Chen, J., Huang, C., Lai, Y., et al., Postglacial range expansion and the role of ecological factors in driving adaptive evolution of Musa basjoo var. formosana, Sci. Rep., 2017, vol. 7, p. 5341. https://doi.org/10.1038/s41598-017-05256-6
8. Chuanliang, D., Jian, Zh., Longdou, L., et al., Study on germplasmic resources of Lycoris longituba using RAPD and ISSR, Analele Universitatii “Alexandru Ioan Cuza,” Seria Genetica si Biologie Moleculara, 2006, vol. VII, pp. 111–120.
9. Clo, J., Gay, L., and Ronfort, J., How does selfing affect the genetic variance of quantitative traits? An updated meta-analysis on empirical results in angiosperm species, Evolution, 2019, vol. 73, no. 8, pp. 1578–1590. https://doi.org/10.1111/evo.13789
10. Dembicz, I., Szczeparska, L., Moysiyenko, I.I., and Wodkiewicz, M., High genetic diversity in fragmented Iris pumila L. populations in Ukrainian steppe enclaves, Basic Appl. Ecol., 2018, vol. 28, pp. 37–47. https://doi.org/10.1016/j.baae.2018.02.009
11. D’Onofrio, C., De Lorenzis, G., Giordani, T., et al., Retrotransposon-based molecular markers for grapevine species and cultivars identification, Tree Genet. Genom., 2010, vol. 6, pp. 451–466. https://doi.org/10.1007/s11295-009-0263-4
12. Doyle, J.J. and Doyle, J.L., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull., 1987, vol. 19, pp. 11–15.
13. Ellegren, H. and Galtier, N., Determinants of genetic diversity, Nat. Rev. Genet., Nature Publ. Group, 2016, vol. 17, no. 7, pp. 422–433. https://doi.org/10.1038/nrg.2016.58
14. Felsenstein, J., PHYLIP—Phylogeny Inference Package (version 3.2), Cladistics, 1989, vol. 5, pp. 164–166.
15. Flanagan, S.P., Forester, B.R., Latch, E., et al., Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation, Evol. Appl., 2018, vol. 11, no. 7, pp. 1035–1052.https://doi.org/10.1111/eva.12569
16. Frankham, R., Ballou, J.D., Ralls, K., et al., Genetic Management of Fragmented Animal and Plant Populations, Oxford, UK: Oxford Univ. Press, 2017. https://doi.org/10.1093/oso/9780198783398.001.0001
17. Garrido-Cardenas, J.A., Mesa-Valle, C., and Manzano-Agugliaro, F., Trends in plant research using molecular markers, Planta, 2018, vol. 247, pp. 543–557. https://doi.org/10.1007/s00425-017-2829-y
18. Glémin, S., Francois, C.M., and Galtier, N., Genome evolution in outcrossing vs. selfing vs. asexual species, in Evolutionary Genomics, Anisimova, M., Ed., Methods Mol. Biol., New York, NY: Humana, 2019, vol. 1910. https://doi.org/10.1007/978-1-4939-9074-011
19. Gupta, P.K. and Rustgi, S., Molecular markers from the transcribed/expressed region of the genome in higher plants, Funct. Integr. Genom., 2004, vol. 4, pp. 139–162. https://doi.org/10.1007/s10142-004-0107-0
20. Hanson, J.O., Rhodes, J.R., Riginos, C., and Fuller, R.A., Environmental and geographic variables are effective surrogates for genetic variation in conservation planning, Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, no. 48, pp. 12755–12760. https://doi.org/10.1073/pnas.1711009114
21. Holderegger, R., Balkenhol, N., Bolliger, J., et al., Conservation genetics: linking science with practice, Mol. Ecol., 2019, vol. 28, pp. 3848–3856. https://doi.org/10.1111/mec.15202
22. Kalendar, R., Antonius, K., Smykal, P., and Schulman, A.H., iPBS: a universal method for DNA fingerprinting and retrotransposon isolation, Theor. Appl. Genet., 2010, vol. 121, no. 8, pp. 1419–1430. https://doi.org/10.1007/s00122-010-1398-2
23. Kalendar, R., Amenov, A., and Daniyarov, A., Use of retrotransposon-derived genetic markers to analyse genomic variability in plants, Funct. Plant Biol., 2018, vol. 46, pp. 15–29. https://doi.org/10.1071/FP18098
24. Kawecki, T.J., Adaptation to marginal habitats, Ann. Rev. Ecol. Evol., 2008, vol. 39, pp. 321–342. https://doi.org/10.1146/annurev.ecolsys.38.091206.095622
25. Kozyrenko, M.M., Artyukova, E.V., and Zhuravlev, Yu.N., Independent species status of Iris vorobievii N.S. Pavlova, Iris mandshurica Maxim., and Iris humilis Georgi (Iridaceae): evidence from the nuclear and chloroplast genomes, Russ. J. Genet., 2009, vol. 45, no. 11, pp. 1394–1402. https://doi.org/10.1134/S1022795409110143
26. Liviero, L., Maestri, E., Gulli, M., et al., Ecogeographic adaptation and genetic variation in wild barley, application of molecular markers targeted to environmentally regulated genes, Genet. Res. Crop. Ev., 2002, vol. 49, no. 2, pp. 133–144. https://doi.org/10.1023/A:1014792509087
27. Mahmud, R., Kabir, M.R., Hoque, E., and Akhond, A.Y., Assessment of some genetic attributes in wheat (Triticum aestivum L.) using gene-specific molecular markers, Agric. Nat. Res., 2018, vol. 52, pp. 39–44. https://doi.org/10.1016/j.anres.2018.05.003
28. Mantel, N., The detection of disease clustering and a generalized regression approach, Cancer Res., 1967, vol. 27, no. 2, pp. 209–220.
29. Pakhrou, O., Medraoui, L., Yatrib, C., et al., Assessment of genetic diversity and population structure of an endemic Moroccan tree (Argania spinosa L.) based in IRAP and ISSR markers and implications for conservation, Physiol. Mol. Biol. Plants, 2017, vol. 23, pp. 651–661. https://doi.org/10.1007/s12298-017-0446-7
30. Pannell, J.R. and Voillemot, M., Evolution and ecology of plant mating systems, eLS, Chichester: Wiley, 2017. https://doi.org/10.1002/9780470015902.a0021909.pub2
31. Parnikoza, I., Andreev, I., Bublyk, O., et al., The current state of steppe perennial plants populations: a case study on Iris pumila, Biologia, 2017, vol. 72, no. 1, pp. 24–35. https://doi.org/10.1515/biolog-2017-0002
32. Peakall, R. and Smouse, P.E., GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, vol. 6, pp. 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
33. Pritchard, J.K., Stephans, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945–959.
34. Rodriguez-Quilon, I., Santos-del-Blanco, L., Serra-Varela, M.J., et al., Capturing neutral and adaptive genetic diversity for conservation in a highly structured tree species, Ecol. Appl., 2016, vol. 26, pp. 2254–2266. https://doi.org/10.1002/eap.1361
35. Ruan, Y., Huang, B.-H., Lai, Sh.-J., et al., Population genetic structure, local adaptation, and conservation genetics of Kandelia obovata, Tree Genet. Genom., 2013, vol. 9, pp. 913–925. https://doi.org/10.1007/s11295-013-0605-0
36. Safriel, N.U., Volis, S., and Kark, S., Core and peripheral populations and global climate change, Isr. J. Plant Sci., 1994, vol. 42, pp. 331–345. https://doi.org/10.1080/07929978.1994.10676584
37. Schluter, P.M. and Harris, S.A., Analysis of multilocus fingerprinting data sets containing missing data, Mol. Ecol. Notes, 2006, vol. 6, no. 2, pp. 569–572. https://doi.org/10.1111/j.1471-8286.2006.01225.x
38. Shirmohammadli, S., Sabouri, H., Ahangar, L., et al., Genetic diversity and association analysis of rice genotypes for grain physical quality using iPBS, IRAP, and ISSR markers, J. Genet. Resour., 2018, vol. 4, pp. 122–129. https://doi.org/10.22080/jgr.2019.15415.1115
39. Soumaya, Rh.-Ch., Sarra, Ch., Maha, M., et al., Gene-targeted markers to assess genetic diversity and population structure within Tunisian Phoenix dactylifera L. cultivars, Silvae Genet., 2020, vol. 69, no. 1. https://doi.org/10.2478/sg-2020-0005
40. Tessier, C., David, J., This, P., et al., Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L., Theor. Appl. Genet., 1999, vol. 98, pp. 171–177. https://doi.org/10.1007/s001220051054
41. Wang, K., Kang, J., Zhou, H., et al., Genetic diversity of Iris lactea var. chinensis germplasm detected by inter-simple sequence repeat (ISSR), Afr. J. Biotechnol., 2009, vol. 8, no. 19, pp. 4856–4863.
42. Wroblewska, A. and Brzosko, E., The genetic structure of the steppe plant Iris aphylla L. at the northern limit of its geographical range, Bot. J. Linn. Soc., 2006, vol. 152, no. 2, pp. 245–255. https://doi.org/10.1111/j.1095-8339.2006. 00568.x
43. Yang, A.-H., Wei, N., Fritsch, P.W., and Yao, X.-H., AFLP genome scanning reveals divergent selection in natural populations of Liriodendron chinense (Magnoliaceae) along a latitudinal transect, Front. Plant Sci., 2016. https://doi.org/10.3389/fpls.2016.00698
44. Zhang, Y., Zhang, X., Chen, X., et al., Genetic diversity and structure of tea plant in Qinba area in China by three types of molecular markers, Hereditas, 2018, vol. 155, no. 22. https://doi.org/10.1186/s41065-018-0058-4
45. Zietkiewicz, E., Rafalski, A., and Labuda, D., Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification, Genomics, 1994, vol. 20, no. 2, pp. 176–183. https://doi.org/10.1006/geno.1994. 1151