Цитологія і генетика 2019, том 53, № 6, 71-78
Cytology and Genetics 2020, том 54, № 2, 147–153, doi: https://www.doi.org/10.3103/S0095452720020139

Молекулярногенетичні аспекти взаємодії Helicobacter pylori з клітинами слизової оболонки шлунка

Сухань Д.С., Вернигородський С.В., Гайдуков Н.В., Людкевич Г.П.

Вінницький національний медичний університет імені М. І. Пирогова.

РЕЗЮМЕ. В работе проанализированы современные взгляды на классические детерминанты вирулентности Helicobater pylori, патогенетические эффекты фосфорилирования и процесс транслокации CagA в клетки СОЖ, охарактеризованы поверхностные мембранные рецепторы связывания VacA с эпителиоцитами СОЖ. Обоснована необходимость проведения генетического типирования Helicobater pylori для определения потенциальной вирулентности микрооргаизма с целью прогнозирования протекания H. pylori-ассоциированных заболеваний и подбора тар-гетной терапии.

У роботі проаналізовано сучасні погляди на класичні детермінанти вірулентності Helicobater pylori, патогенетичні ефекти фосфорилювання та процес транслокації CagA у клітини СОШ, охарактеризовані поверхневі мембранні рецептори зв’язування VacA з епітеліоцитами СОШ. Обґрунтовано необхідність проведення генетичного типування Helicobacter pylori для виявлення потенційної вірулентності мікроорганізму з метою прогнозування перебігу H. pylori-асоційованих захворювань та підбору таргетної терапії.

Ключові слова: Helicobacter pylori, CagA, VacA, патология желудка
Helicobacter pylori, CagA, VacA, шлункова патологія

Цитологія і генетика
2019, том 53, № 6, 71-78

Current Issue
Cytology and Genetics
2020, том 54, № 2, 147–153,
doi: 10.3103/S0095452720020139

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Kurinna, Y.G. Report on the Kyoto International Consensus on Gastritis Associated with Helicobacter pylori,Mod. Gastroenterol., 2016, vol. 86, no. 1, pp. 36–53.

2. Lind, J., Backert, S., and Hoffmann, R., Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of East Asian-type Helicobacter pylori strains, BMC Microbiol., 2016, vol. 16, no. 1, https://doi.org/10.1186/s12866-016-0820-6

3. Pachathundikandi, S. K., Lind, J., and Tegtmeyer, N., Interplay of the gastric pathogen Helicobacter pylori with Toll-like receptors, BioMed. Res. Int., 2015, pp. 1–12. https://doi.org/10.1155/2015/192420

4. Salama, N.R., Hartung, M.L., and Müller, A., Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori,Nat. Rev. Microbiol., 2013, vol. 11, no. 6, pp. 385–399. https://doi.org/10.1038/nrmicro3016

5. Linz, B., Balloux, F., and Moodley, Y., An African origin for the intimate association between humans and Helicobacter pylori,Nature, 2007, vol. 445, no. 7130, pp. 915–918. https://doi.org/10.1038/nature05562

6. Backert, S. and Tegtmeyer, N., Type IV secretion and signal transduction of Helicobacter pylori CagA through Interactions with host cell receptors, Toxins, 2017, vol. 9, no. 4, p. 115. https://doi.org/10.3390/toxins9040115

7. Maixner, F., Krause-Kyora, B., and Turaev, D., The 5300-year-old Helicobacter pylori genome of the Iceman, Science, 2016, vol. 351, no 6269, pp. 162–165. https://doi.org/10.1126/science.aad2545

8. Amieva, M., and Peek, R.M., Pathobiology of Helicobacter pylori-induced gastric cancer, Gastroenterology, 2016, vol. 150, no. 1, pp. 64–78. https://doi.org/10.1053/j.gastro.2015.09.004

9. Moodley, Y., Linz, B., and Bond, R.P., Age of the association between Helicobacter pylori and man, PLoS Pathogens, 2012, vol. 8, no. 5. https://doi.org/10.1371/journal.ppat.1002693

10. Kodaman, N., Sobota, R.S. and Mera, R., Disrupted human–pathogen co-evolution: a model for disease, Front. Genetics, 2014, no. 5. https://doi.org/10.3389/fgene.2014.00290

11. Yamaoka, Y., Graham, D.Y., Helicobacter pylori virulence and cancer pathogenesis, Future Oncol., 2014, vol. 10, no. 8, pp. 1487–1500. https://doi.org/10.2217/fon

12. Westmeier, D., Posselt, G., and Hahlbrock, A., Nanoparticle binding attenuates the pathobiology of gastric cancer-associated Helicobacter pylori,Nanoscale, 2018, 10, no. 3, pp. 1453–1463. https://doi.org/10.1039/c7nr06573f

13. Backert, S., Clyne, M., and Tegtmeyer, N., Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori,Cell Commun. Signal., 2011, 9, no. 1, p. 28. https://doi.org/10.1186/1478-811X-9-28

14. Amieva, M.R. and El-Omar, E.M., Host–bacterial interactions in Helicobacter pylori infection, Gastroenterology, 2008, 134, no 1, pp. 306–323. https://doi.org/10.1053/j.gastro.2007.11.009

15. Atherton, J.C. and Blaser, M.J., Coadaptation of Helicobacter pylori and humans: ancient history, modern implications, J. Clin. Invest., 2009, 119, no. 9, pp. 2475–2487. https://doi.org/10.1172/JCI38605

16. Polk, D.B. and Peek, R.M., Helicobacter pylori: gastric cancer and beyond, Nat. Rev. Cancer, 2010, vol. 10, no. 6, pp. 403–414. https://doi.org/10.1038/nrc2857

17. Schreiber, S., Konradt, M.C., and Grol, O., The spatial orientation of Helicobacter pylori in the gastric mucus, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, no. 14, pp. 5024–5029. https://doi.org/10.1073/pnas.0308386101

18. Schreiber, S., Bucker, R., and Groll, C., Rapid loss of motility of Helicobacter pylori in the gastric lumen in vivo, Infect. Immun., 2005, vol. 73, no. 3, pp. 1584– 1589. https://doi.org/10.1128/IAI.73.3.1584-1589.2005

19. Backert, S. and Tegtmeyer, N., The versatility of the Helicobacter pylori vacuolating cytotoxin VacA in signal transduction and molecular crosstalk, Toxins, 2010, vol. 2, no. 1, pp. 69–92. https://doi.org/10.3390/toxins2010069

20. Hiroko, N. and Masanori, H., Sequence polymorphism and intrinsic structural disorder as related to pathobiological performance of the Helicobacter pylori CagA oncoprotein, Toxins, 2017, vol. 9, no. 4, pp. 136. https://doi.org/10.3390/toxins9040136

21. Kostiuk, O.V., Pathogenicity factors of H. pylori: genotypic bases and phenotypic manifestations, Prevent. Med., 2012, vol. 2, no. 18, pp. 65–70.

22. Backert, S. and Blaser, M.J., The role of CagA in the gastric biology of Helicobacter pylori, Am. Assoc. Cancer Res., 2016, vol. 76, no. 14, pp. 4028–4031. https://doi.org/10.1158/0008-5472.CAN-16-1680

23. Hayashi, T., Senda, M., Morohashi, H., Higashi, H., Horio, M., Kashiba, Y., Nagase, L., Sasaya, D., Shimizu, T., and Venugopalan, N., Tertiary structure–function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA, Cell Host Microbe, 2012, no. 12, pp. 20–33.https://doi.org/10.1016/j.chom.2012.05.010

24. Kostyuk, O.V., Factors of pathogenicity of H. pylori: genotypical bases and phenotypic manifestations, Profilakt. Med.: Sci. Pract. J., 2012, no. 2, pp. 65–70.

25. Shariq, M., Kumar, N., and Kumari, R., Biochemical Analysis of CagE: a VirB4 homologue of Helicobacter pylori Cag-T4SS, PLoS One, 2015, vol. 11, no. 10. https://doi.org/10.1371/journal.pone.0142606

26. Zhang, J., Fan, F., and Zhao, Y., Crystal structure of the type IV secretion system component CagX from Helicobacter pylori,Acta Crystallogr. F Struct. Biol. Commun., 2017, vol. 73, no. 3, pp. 167–173. https://doi.org/10.1107/S2053230X17001376

27. Merino, E., Flores-Encarnaciyn, M., and Aguilar-Gutierrez, G.R., Functional interaction and structural characteristics of unique components of Helicobacter pylori T4SS, FEBS J., 2017, vol. 284, no. 21, pp. 3540–3549. https://doi.org/10.1111/febs.l4092

28. Sause, W. E., Keilberg, D., Aboulhouda, S., and Ottemann, K.M., The Helicobacter pylori autotransporter ImaA tempers the bacterium’s interaction with a5pi integrin, Infect. Immun., 2017, vol. 85, no. l. https://doi.org/10.1128/IAI.00450-16

29. Ko, S.H., Rho, D.J., Jeon, J.L., Kim, Y.J., Woo, H.A., Kim, N., and Kim, J.M., Crude preparations of Helicobacter pylori outer membrane vesicles induce upregulation of heme oxygenase-1 via activating Akt-Nrf2 and mTOR-IкB Kinase-NF-кB pathways in dendritic cells, Infect. Immun., 2016, vol. 84, no. 8, pp. 2162–2174. https://doi.org/10.1128/IAI.00190-16

30. Park, N.H., Song, M.S., Shin, S.Y., Jeong, J.-H., and Lee, H.Y., The effects of medication adherence and health literacy on health-related quality of life in older people with hypertension, Int. J. Older People Nurs., 2018, vol. 13, no. 3. https://doi.org/10.1111/opn.l2196

31. Jones, K.R., Whitmire, J.M., and Merrell, D.S., A tale of two toxins: Helicobacter pylori CagA and VacA modulate host pathways that impact disease, Front. Microbiol., 2010, vol. 1. https://doi.org/10.3389/fmicb.2010.00115

32. Nishikawa, H., Hatakeyama, M. Sequence polymorphism and intrinsic structural disorder as related to pathobiological performance of the Helicobacter pylori CagA oncoprotein, Toxins, 2017, vol. 9, no. 4, p. 136. https://doi.org/10.3390/toxins9040136

33. Palcev, M.A., Kaktursky, L.V., and Zayratyants, O.V., Pathological Anatomy: National Leadership, Moscow: GEOTAR-MEDIA, 2013.

34. Chomvarin, C., Phusri, K., Sawadpanich, K., Mairiang, P., Namwat, W., Wongkham, C., and Hahnvajanawong, C., Prevalence of cagA EPГYA motifs in Helicobacter pylori among dyspeptic patients in Northeast Thailand, Southeast Asian J. Trop. Med. Public Health, 2012, vol. 42, no. 1, pp. 105–115.

35. Hatakeyama, M., Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis, Cell Host Microbe, 2014, vol. 15, no. 3, pp. 306–316.https://doi.org/10.1016/j.chom.2014.02.008

36. Buzas, G.M., Helicobacter pylori: A Worldwide Perspective 2014, Budapest: Bentham Science Publishers, 2014.

37. Wong, S.H.M., Fang, C.M., and Chuah, L.-H., E-cadherin: Its dysregulation in carcinogenesis and clinical implications, Crit. Rev. Oncol./Hematol., 2018, 121, pp. 11–22. https://doi.org/10.1016/j.critre-vonc.2017.11.010

38. Tegtmeyer, N. and Backert, S., Molecular Pathogenesis and Signal Transduction by Helicobacter pylori, Switzerland: Springer, 2017.

39. Wroblewski, L.E. and Peek, R.M., Targeted disruption of the epithelial-barrier by Helicobacter pylori,Cell Commun. Signal., 2011, vol. 9. https://doi.org/10.1186/1478-811X-9-29

40. Zhang, Y., Xia, M., and Jin, K., Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities, Mol. Cancer, 2018, vol. 17, no. 1. https://doi.org/10.1186/s12943-018-0796-y

41. Steffen, B. and Yoshio, Y. Helicobacter pylori Research: From Bench to Bedside, Japan: Springer, 2016.

42. Li, N., Tang, B., and Jia, Y., Helicobacter pylori CagA protein negatively regulates autophagy and promotes inflammatory response via c-Met-PI3K/Akt-mTOR signaling pathway, Front. Cell. Infect. Microbiol., 2017, no. 7. https://doi.org/10.3389/fcimb.2017.00417

43. Churin, Y., Al-Ghoul, L., Kepp, O., Meyer, T.F., Birchmeier, W., and Naumann, M., Helicobacter pylori CagA protein targets the c-Met receptor and enhances the mitogenic response, J. Cell Biol., 2003, vol. 161, no. 2, pp. 249–255. https://doi.org/10.1083/jcb.200208039

44. Huang, X., Wang, C., Sun, J., Luo, J., You, J., Liao, L., and Li, M., Clinical value of CagA, c-Met, PI3K and Beclin-1 expressed in gastric cancer and their association with prognosis, Oncol Lett., 2018, vol. 15, no. 1, pp. 947–955. https://doi.org/10.3892/ol.2017.7394

45. Hiroko, N. and Masanori, H., Sequence polymorphism and intrinsic structural disorder as related to pathobiological performance of the Helicobacter pylori CagA oncoprotein, Toxins, 2017, vol. 9, no. 4, p. 136. https://doi.org/10.3390/toxins9040136

46. Yamahashi, Y., Saito, Y., Murata-Kamiya, N., and Hatakeyama, M., Polarity-regulating kinase partitioning-defective 1b (PAR1b) phosphorylates guanine nucleotide exchange factor H1 (GEF-H1) to regulate RhoA-dependent actin cytoskeletal reorganization, J. Biol. Chem., 2011, vol. 286, no. 52, pp. 44 576–44 584. https://doi.org/10.1074/jbc.M111.267021

47. Nishikawa, H., Hayashi, T., and Arisaka, F., Impact of structural polymorphism for the Helicobacter pylori CagA oncoprotein on binding to polarity-regulating kinase PARlb, Sci. Rep., 2016, vol. 6, no. 1. https://doi.org/10.1038/srep30031

48. Fahimi, R, Tohidkia, M.R., and Fouladi, M., Pleiotropic cytotoxicity of VacA toxin in host cells and its impact on immunotherapy, BioImpacts, 2017, vol. 7, no. 1, pp. 59–71. https://doi.org/10.15171/bi.2017.08

49. Foegeding, N., Caston, R, and McClain, M., An overview of Helicobacter pylori VacA toxin biology, Toxins, 2016, vol. 8, no. 6, p. 173. https://doi.org/10.3390/toxins8060173

50. Chauhan, N., Tay, A.C.Y., Marshall, B.J., and Jain, U., Helicobacter pylori VacA, a distinct toxin exerts diverse functionalities in numerous cells: an overview, Helicobacter, 2018, no. 16. https://doi.org/10.1111/hel.12544

51. McClain, M.S., Beckett, A.C., and Cover, T.L. Helicobacter pylori vacuolating toxin and gastric cancer, Toxins, 2017, vol. 12, no. 10. https://doi.org/10.3390/toxins91003l6

52. Ivie, S.E, McClain, M.S., and Algood, H., Analysis of a p-helical region in the p55 domain of Helicobacter pylori vacuolating toxin, BMC Microbiol., 2010, vol. 10, no. 1, p. 60. https://doi.org/10.1186/1471-2180-10-60

53. Palframan, S. L., Kwok, T., and Gabriel, K., Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis, Front. Cell. Inf. Microbiol., 2012, vol. 2, p. 92. https://doi.org/10.3389/fcimb.2012.00092

54. Foo, H., Culvenor, J.G, and Ferrero, R.L., Both the p33 and p55 subunits of the Helicobacter pylori VacA toxin are targeted to mammalian mitochondria, J. Mol. Biol., 2010, vol. 401, no. 5, pp. 792–798.https://doi.org/10.1016/j.jmb.2010.06.065

55. Yahiro, K., Hirayama, T., and Moss, J., New insights into VacA intoxication mediated through its cell surface receptors, Toxins, 2016, vol. 8, no. 5, p. 152. https://doi.org/10.3390/toxins8050152